
NAME: ____________________________________ (FIRST NAME FIRST) SCORE: ____

1 T: ___

COSC 4330 FIRST MIDTERM OCTOBER 2, 2002

This exam is closed book. You can have one page of notes.

1. Explaining why (5 points each).

a) Why do most operating systems on the market continue to use monolithic kernels?

Because monolithic kernels are faster than microkernels.

b) Why are timer interrupts so important?

Because they are needed to prevent a running process doing no I/O operations from
keeping the CPU forever.

c) Why should we prevent users of a multi-user system from rebooting the OS from a floppy disk?

Because they could reboot the system with a doctored kernel allowing them
unrestricted access to other users’ files.

d) Why was MS-DOS inherently insecure?

Because it gave user processes direct access to the BIOS I/O routines.

e) Why are layered kernel organizations impractical?

Because the multiple functions on an OS are highly interdependent and cannot be
easily layered one on the top of another.

f) Why will we never see hard drives with access times below one millisecond?

Because they would have to spin too fast.

2. Somebody proposes to you replace the fork() and execvp() system calls of UNIX by a single system
call, say, newprocp(filename, argv) combining the functions of fork() and execvp() in a single
system call.

a) What would be the major advantage of this solution? (5 points)

It would combine two system calls into one and eliminate the cost of having the
fork() making a copy of the data segment of the parent process in the address
space of the new process.

b) Which features of UNIX would stop working if the fork() and execvp() system calls were
removed ? (2×5 points)

I/O redirection and pipes.

3. How many lines will the following program print out? (5 points)

main() {
 fork();

COSC 4330 First Midterm Name: ___________________

 T: ___ 2

 printf(“Hello!\n”);
 fork();
 printf(“Goodbye!\n”);
}

Answer: The program will print out exactly __6__ lines.

4. Compare and contrast the master-slave and the symmetric approaches to building multiprocessor
operating systems. (10 points)

The master/slave approach requires less changes to the kernel but creates a potential
bottleneck as there is a single copy of the kernel that has to respond to the requests
of all user processes.

5. Represent all the possible transitions among the ready, running and waiting states (6 points) and
describe in one or two sentences those involving the ready state (9 points). Note: You will lose
points if you represent other states or other transitions than those requested.

(see class notes).

6. How will the following code fragment affect stdin, stdout and stderr? (5 points each)

int fd, pd[2];
pipe(pd);
fd = open(“data.txt”, O_RDWR | O_CREAT, 0640);
close (0);
dup(fd);
close(1);
dup(pd[1]);

stdin is reading now from the file data.txt ___________________________________

stdout is redirected to the pipe pd ___

stderr is unchanged __

7. You have the choice between writing a program using user-level threads or kernel supported threads.
Which factors should affect your decision when both types of threads are supported by the OS on
which the program will run? (2×5 points)

User level threads are faster but require the use of non-blocking I/O calls.

