NAME:		(FIRST NAME FIRST)	SCORE:
-------	--	--------------------	--------

COSC 4330

FIRST MIDTERM

SEPTEMBER 28, 2009

This exam is **closed book**. You can have **one page** of notes. UH expels cheaters.

- 1. Questions with short answers. (6×5 points)
 - a) What is the major advantage of *microkernels*?

Microkernels allow kernel extensions to run in user space, which prevents them from crashing the kernel. (\underline{Also} : Microkernels are smaller, more manageable and easier to secure.)

b) What is the main function of *timer interrupts*?

Timer interrupts prevent processes from monopolizing the CPU for long periods of time.

- c) What is the main disadvantage of *non-preemptive* scheduling policies?
 - Processes that do not do issue system calls can monopolize the CPU for long periods of time.
- d) What is the main advantage of the *symmetric organization* for multiprocessor operating systems? All processors can run kernel code, which avoids one potential bottleneck.
- e) What is the main disadvantage of *delaying disk writes*?

Writes may be lost if the process—or the system--crashes.

f) Give an example of a *hard real-time* application?

Heart pacemakers, and industrial process control systems.

- **2.** What is the *default action* a process takes when it *receives a signal*? (5 points) How can processes specify which other action to take? (5 points) Is it always possible? (5 points)
 - a) By default, a process that receives a signal terminates.
 - b) A process can specify any other action to be taken when it receives a signal by executing beforehand a signal() system call. The signal is then said to be caught by the process
 - c) The ninth SIGKIL cannot be caught and always forces receiving processes to terminate.
- **3.** Which are the three required conditions to prevent unauthorized access to user data in a shared computer system? (3×5 points) (*Hint: these requirements can be hardware, software or anything else.*)
 - a) The system must have a dual-mode CPU in order to prevent user processes from directly accessing the disk and other peripherals.
 - b) The system must have memory protection in order to prevent malevolent users from tampering with the kernel code (and the code of other running processes).
 - c) Users must be prevented from rebooting the system with a roque operating system.

1

т.
1.

4.	Complete the	following	scheduling	table	for a	System	V	Release	4	scheduler	using	the	most
	reasonable valu	ues for all p	arameters:	(5 poir	nts per	correct li	ine)					

#ts_quantum ts_tqexp ts_slpret ts_maxwait ts_lwait LEVEL

200		_1	4000	_1	#	0
100	0	1	1000	1	#	1

5. How many lines will the following program print? (5 points)

Answer: The program will print <u>four</u> lines.

6. Complete the following code fragment in order to have **stdout** redirected to the pipe **piped**? (2×5 points)

```
int piped[2];
pipe(piped);
close( ______1 );
dup( _____piped[1] );
```

- 7. Which are the three states from where a process can enter the ready queue? $(3\times5 \text{ points})$
 - a) From the <u>running</u> state when the process _____

b) From the <u>waiting</u> state after the process_____

gets interrupted by the scheduler _____

completes a system call_____

c) From the <u>new</u>_state after the process _____

arrives