
SOLUTIONS FOR
THE FIRST 4330
QUIZ

Jehan-François Pâris
Spring 2015

Advantages and disadvantages

 Match each of the following advantages or
disadvantages with the single sentence that
describes it best:

 Hint: Several of the choices offered are
plain wrong

Advantages and disadvantages

 Main disadvantage of delayed writes

Advantages and disadvantages

 Main disadvantage of delayed writes

Will result in a data loss if the system
crashes at the wrong time.

Advantages and disadvantages

 Main advantage of dual-mode CPUs

Advantages and disadvantages

 Main advantage of dual-mode CPUs

Prevent user processes from directly
accessing disk drives and other
peripherals

Advantages and disadvantages

 Main advantage of timer interrupts

Advantages and disadvantages

 Main advantage of timer interrupts

Prevent user processes from
monopolizing a CPU core

Advantages and disadvantages

 Main advantage of DMA controllers

Advantages and disadvantages

 Main advantage of DMA controllers

Speed up data transfers between the disk
drive and the main memory

On the other hand, they do not provide user
processes with direct access to disk drives
and other peripherals
Would be very bad!

Advantages and disadvantages

 Main advantage of lightweight processes

Advantages and disadvantages

 Main advantage of lightweight processes

Are much cheaper to create than
conventional processes

Advantages and disadvantages

 Main disadvantage of microkernels

Advantages and disadvantages

 Main disadvantage of microkernels

 Introduce additional context switch delays in
the processing of requests

Advantages and disadvantages

 Main advantage of modular kernels

Advantages and disadvantages

 Main advantage of modular kernels

Let users add new features to the kernel

Advantages and disadvantages

 Main disadvantage of modular kernels

Advantages and disadvantages

 Main disadvantage of modular kernels

 Increase the risk of system crashes

Advantages and disadvantages

 Main advantage of time sharing

Advantages and disadvantages

 Main advantage of time sharing

Allows multiple interactive users to share
the same computer

Advantages and disadvantages

 Main advantage of multi-threaded servers

Advantages and disadvantages

 Main advantage of multi-threaded servers

Can process multiple client requests in
parallel

Questions with short answers

 How can we prevent processes from accessing
the address spaces of other processes?

 How can we prevent user processes from
tampering with the kernel?

Questions with short answers

 How can we prevent processes from accessing
the address spaces of other processes?

 How can we prevent user processes from
tampering with the kernel?

 By adding memory protection.

Questions with short answers

 In a dual-mode CPU, how can the CPU switch
from user mode to privileged mode?

Questions with short answers

 In a dual-mode CPU, how can the CPU switch
from user mode to privileged mode?

 When it processes an interrupt (as the
interrupt will leave the program counter
in a safe location INSIDE the kernel.)

Questions with short answers

 What is the main difference between real-time
applications with hard and soft deadlines?

Questions with short answers

 What is the main difference between real-time
applications with hard and soft deadlines?

 Missing a hard deadline can have
catastrophic consequences while
missing a soft deadline is a mere
inconvenience

Questions with short answers

 What would have happened if Unix had
remained written in assembly language?

Questions with short answers

 What would have happened if Unix had
remained written in assembly language?

 It would not have been ported to other
architectures and would NOT have had
the same impact

Questions with short answers

 Why is fork() one of the costliest system
calls?

Questions with short answers

 Why is fork() one of the costliest system
calls?

 Because it requires making a copy of the
address space of the forking process

Questions with short answers

 In which state is a process performing a disk
I/O?

Questions with short answers

 In which state is a process performing a disk
I/O?

 In the WAITING STATE

Questions with short answers

 In which state is a process waiting for a core?

 In the READY STATE

I/O Redirection

 How would you let a program read its standard
input from the file input.txt?

 fh = open("data.txt", O_RDONLY);

close(fh);

I/O Redirection

 How would you let a program read its standard
input from the file input.txt?

 fh = open("data.txt", O_RDONLY);
close(0) // Close stdio

close(fh);

I/O Redirection

 How would you let a program read its standard
input from the file input.txt?

 fh = open("data.txt", O_RDONLY);
close(0) // Close stdio
dup(fh) // Duplicate fh into stdio
close(fh);

Parent and child processes

 Add the two system calls that will ensure that
the program will print exactly once Hello World!
and Goodbye! in that order. (2×5 points)

Parent and child processes

 int main(){
if (fork() == 0) {

printf("Hello World!\n");

}

printf("Goodbye!\n")

} // main

Parent and child processes

 int main(){
if (fork() == 0) {

printf("Hello World!\n");
_exit(0); // Terminate child process

}

printf("Goodbye!\n")

} // main

Parent and child processes

 int main(){
if (fork() == 0) {

printf("Hello World!\n");
_exit(0); // Terminate child process

}
wait(0); // Forces parent to wait
printf("Goodbye!\n")

} // main

Unix signals

 What is the default action that a Unix process
takes when it receives a signal?

 What can it do to prevent that from happening?

 Is this always possible?

Unix signals

 What is the default action that a Unix process
takes when it receives a signal?
 The process terminates

 What can it do to prevent that from happening?

 Is this always possible?

Unix signals

 What is the default action that a Unix process
takes when it receives a signal?
 The process terminates

 What can it do to prevent that from happening?
 The process can catch the signal

 Is this always possible?

Unix signals

 What is the default action that a Unix process
takes when it receives a signal?
 The process terminates

 What can it do to prevent that from happening?
 The process can catch the signal

 Is this always possible?
 NO, the SIGKIL signal cannot be caught
 NO, signal number nine cannot be caught

Process state transitions

 Which events will bring a RUNNING process into
the WAITING state?

Process state transitions

 Which events will bring a RUNNING process into
the WAITING state?

The process issues a (blocking) system
request

Process state transitions

 Which events will bring a WAITING process into
the READY queue?

Process state transitions

 Which events will bring a WAITING process into
the READY queue?

The completion of a pending system
request

