Solutions to the first
midterm

COSC 4330/6310
Summer 2012




First question: True or false

> Processes waiting for the CPU are in the
waliting state.




First question: True or false

> Processes waiting for the CPU are in the
waliting state.

> FALSE, they are in the ready state




First question: True or false

> UNIX was the first system to be written in C.




First question: True or false

> UNIX was the first system to be written in C.

> TRUE, it was designed to be portable
(and C was specifically written for UNIX)




First question: True or false

> Memory protection is always
Implemented in hardware.




First question: True or false

> Memory protection is always implemented
iIn hardware.

> TRUE, any other solution would be too slow




First question: True or false

> execve() system calls are often followed by
a fork() system call.




First question: True or false

> execve() system calls are often followed by
a fork() system call.

> FALSE, it is the other way around:

fork() system calls are often followed by
an execve() system call.




First question: True or false

> |Ina multiprogramming system, there can
be many programs in the system but only
one process .




First question: True or false

In a multiprogramming system, there can
be many programs in the system but only
one process .

FALSE, there are many processes
competing for one of the CPU cores




First question: True or false

> Most modern operating systems have a
microkernel.




First question: True or false

> Most modern operating systems have a
microkernel.

> FALSE, microkernels are too slow




Second guestion:
Advantages and disadvantages

> What is the major disadvantage of modular
kernels over monolithic kernels?




Second guestion:
Advantages and disadvantages

> What is the major disadvantage of modular
kernels over monolithic kernels?

> They make the kernel less robust.




Second guestion:
Advantages and disadvantages

> What is the major advantage of modular
kernels over monolithic kernels?




Second guestion:
Advantages and disadvantages

> What is the major advantage of modular
kernels over monolithic kernels?

> They let users add functionality to the kernels
like new file systems or device drivers for
new devices




Second guestion:
Advantages and disadvantages

> What Is the major disadvantage of CPUs that
do not have a privileged mode?




Second guestion:
Advantages and disadvantages

> What is the major disadvantage of CPUs that
do not have a privileged mode?

> They cannot prevent user processes from
executing I/O instructions




Second guestion:
Advantages and disadvantages

> What is the major disadvantage of not
having memory protection?




Second guestion:
Advantages and disadvantages

What is the major disadvantage of not
having memory protection?

We cannot prevent user processes from
tampering with the kernel (and other user
processes)




Second guestion:
Advantages and disadvantages

> What is the major advantage of user-level
threads?




Second guestion:
Advantages and disadvantages

> What is the major advantage of user-level
threads?

> They are portable and can run on kernels
that do not support threads.




Third question: I/O redirection

> Complete the following fragment of code to
ensure that the standard input of the
process Is redirected to the pipe mypipe.

> int fd, mypipe[2];

close(mypipe[0]); close(mypipe[1]);




Third question: I/O redirection

> Complete the following fragment of code to
ensure that the standard input of the
process Is redirected to the pipe mypipe.

int fd, mypipe[2];

pipe(mypipe);

close(0); dup(mypipe[0];
close(mypipe[0]); close(mypipe[1]);




Third question: I/O redirection

> Complete the following fragment of code to
ensure that the standard output of the
process Is redirected to the pipe mypipe.

> int fd, mypipe[2];

close(mypipe[0]); close(mypipe[1]);




Third question: I/O redirection

> Complete the following fragment of code to
ensure that the standard output of the
process Is redirected to the pipe mypipe.

int fd, mypipe[2];

pipe(mypipe);

close(1); dup(mypipe[1];
close(mypipe[0]); close(mypipe[1]);




Fourth question

> How many lines of output will the following
program print? (5 points)

int main(){
if (fork() == 0)
printf("Hello World!\n");
printf("Goodbye!\n")
} /I main




Fourth question

> How many lines of output will the following
program print? (5 points)

int main(){
if (fork() == 0)
printf("Hello World!\n");
printf("Goodbye!\n")
} /I main

> Three lines




Fifth question

> (Glve an example of a real time process with
soft deadlines.




Fifth question

> Give an example of a real time process
with soft deadlines.

> A DVD player




Sixth question

> What is happening when a UNIX process
Issues a wait() system call and all its child
processes have already terminated?

> WIll the process walit forever?




Sixth question

What is happening when a UNIX process
Issues a wait() system call and all its child
processes have already terminated?

Will the process walit forever?

NO, processes that have terminated but
have not yet been waited for by their
parents remain in the process table in the
ZOMBIE state.

The walting process returns immediately




Seventh question

> Which UNIX system call can we use to
catch signals? What does it mean? Is it
always possible?




Seventh question

Which UNIX system call can we use to
catch signals? What does it mean? Is it
always possible?

signalf(...)
signal specifies what the process should do
when it receives a specific signal

No signal number 9 (SIGKIL) cannot be
caught




Eighth question

> Why should we prevent users of a multi-
user system from rebooting the OS from
their own CD-ROM?




Eighth question

> Why should we prevent users of a multi-
user system from rebooting the OS from
their own CD-ROM?

User could reboot the system with an OS
that will let do things they are not authorized
to do




