
Solutions to the first
midterm

COSC 4330/6310
Summer 2012

First question: True or false

 Processes waiting for the CPU are in the
waiting state.

First question: True or false

 Processes waiting for the CPU are in the
waiting state.

 FALSE, they are in the ready state

First question: True or false

 UNIX was the first system to be written in C.

First question: True or false

 UNIX was the first system to be written in C.

 TRUE, it was designed to be portable
(and C was specifically written for UNIX)

First question: True or false

 Memory protection is always
implemented in hardware.

First question: True or false

 Memory protection is always implemented
in hardware.

 TRUE, any other solution would be too slow

First question: True or false

 execve() system calls are often followed by
a fork() system call.

First question: True or false

 execve() system calls are often followed by
a fork() system call.

 FALSE, it is the other way around:

fork() system calls are often followed by
an execve() system call.

First question: True or false

 In a multiprogramming system, there can
be many programs in the system but only
one process .

First question: True or false

 In a multiprogramming system, there can
be many programs in the system but only
one process .

 FALSE, there are many processes
competing for one of the CPU cores

First question: True or false

 Most modern operating systems have a
microkernel.

First question: True or false

 Most modern operating systems have a
microkernel.

 FALSE, microkernels are too slow

Second question:
Advantages and disadvantages

 What is the major disadvantage of modular
kernels over monolithic kernels?

Second question:
Advantages and disadvantages

 What is the major disadvantage of modular
kernels over monolithic kernels?

 They make the kernel less robust.

Second question:
Advantages and disadvantages

 What is the major advantage of modular
kernels over monolithic kernels?

Second question:
Advantages and disadvantages

 What is the major advantage of modular
kernels over monolithic kernels?

 They let users add functionality to the kernels
like new file systems or device drivers for
new devices

Second question:
Advantages and disadvantages

 What is the major disadvantage of CPUs that
do not have a privileged mode?

Second question:
Advantages and disadvantages

 What is the major disadvantage of CPUs that
do not have a privileged mode?

 They cannot prevent user processes from
executing I/O instructions

Second question:
Advantages and disadvantages

 What is the major disadvantage of not
having memory protection?

Second question:
Advantages and disadvantages

 What is the major disadvantage of not
having memory protection?

 We cannot prevent user processes from
tampering with the kernel (and other user
processes)

Second question:
Advantages and disadvantages

 What is the major advantage of user-level
threads?

Second question:
Advantages and disadvantages

 What is the major advantage of user-level
threads?

 They are portable and can run on kernels
that do not support threads.

Third question: I/O redirection

 Complete the following fragment of code to
ensure that the standard input of the
process is redirected to the pipe mypipe.

 int fd, mypipe[2];

close(mypipe[0]); close(mypipe[1]);

Third question: I/O redirection

 Complete the following fragment of code to
ensure that the standard input of the
process is redirected to the pipe mypipe.

 int fd, mypipe[2];
pipe(mypipe);
close(0); dup(mypipe[0];
close(mypipe[0]); close(mypipe[1]);

Third question: I/O redirection

 Complete the following fragment of code to
ensure that the standard output of the
process is redirected to the pipe mypipe.

 int fd, mypipe[2];

close(mypipe[0]); close(mypipe[1]);

Third question: I/O redirection

 Complete the following fragment of code to
ensure that the standard output of the
process is redirected to the pipe mypipe.

 int fd, mypipe[2];
pipe(mypipe);
close(1); dup(mypipe[1];
close(mypipe[0]); close(mypipe[1]);

Fourth question
 How many lines of output will the following

program print? (5 points)
int main(){

if (fork() == 0)
printf("Hello World!\n");

printf("Goodbye!\n")
} // main

 __________lines

Fourth question
 How many lines of output will the following

program print? (5 points)
int main(){

if (fork() == 0)
printf("Hello World!\n");

printf("Goodbye!\n")
} // main

 Three lines

Fifth question
 Give an example of a real time process with

soft deadlines.

Fifth question
 Give an example of a real time process

with soft deadlines.

 A DVD player

Sixth question
 What is happening when a UNIX process

issues a wait() system call and all its child
processes have already terminated?

 Will the process wait forever?

Sixth question
 What is happening when a UNIX process

issues a wait() system call and all its child
processes have already terminated?

 Will the process wait forever?

 NO, processes that have terminated but
have not yet been waited for by their
parents remain in the process table in the
ZOMBIE state.

 The waiting process returns immediately

Seventh question
 Which UNIX system call can we use to

catch signals? What does it mean? Is it
always possible?

Seventh question
 Which UNIX system call can we use to

catch signals? What does it mean? Is it
always possible?

 signal(…)
 signal specifies what the process should do

when it receives a specific signal
 No signal number 9 (SIGKIL) cannot be

caught

Eighth question
 Why should we prevent users of a multi-

user system from rebooting the OS from
their own CD-ROM?

Eighth question
 Why should we prevent users of a multi-

user system from rebooting the OS from
their own CD-ROM?

 User could reboot the system with an OS
that will let do things they are not authorized
to do

