
Solutions to the first
midterm

COSC 4330/6310
Summer 2013

First question

a) Give an example of a popular operating
system using a UNIX or a Linux kernel.

b) Give an example of a real-time process
with hard deadlines.

First question

a) Give an example of a popular operating
system using a UNIX or a Linux kernel.

 Mac OS X or Android

b) Give an example of a real-time process
with hard deadlines.

First question

a) Give an example of a popular operating
system using a UNIX or a Linux kernel.

 Mac OS X or Android

b) Give an example of a real-time process
with hard deadlines.

 Industrial process control,
missile guidance system,
...

First question

c) What is the main disadvantage of
microkernels?

d) What is the main advantage of delayed
writes?

First question

c) What is the main disadvantage of
microkernels?

 They are slower than other kernel
organizations

d) What is the main advantage of delayed
writes?

First question

c) What is the main disadvantage of
microkernels?

 They are slower than other kernel
organizations

d) What is the main advantage of delayed
writes?
 They reduce the number of disk

accesses
 They return faster

First question

e) Where was the first operating system with a
graphical user interface developed?

f) Which event(s) will move a process from the
waiting state to the ready state?

First question

e) Where was the first operating system with a
graphical user interface developed?

 At Xerox Palo Alto Research Center
(Xerox PARC)

f) Which event(s) will move a process from the
waiting state to the ready state?

First question

e) Where was the first operating system with a
graphical user interface developed?

 At Xerox Palo Alto Research Center
(Xerox PARC)

f) Which event(s) will move a process from the
waiting state to the ready state?

 Whenever a system request issued by
the process completes

Second question
 What would be the main disadvantage of a

processor that would not have (3×5 points)
a) Separate supervisor and user modes?

b) Memory protection?

c) Timer interrupts?

Second question
 What would be the main disadvantage of a

processor that would not have (3×5 points)
a) Separate supervisor and user modes?
 We could not prevent user programs

from directly accessing the disk
b) Memory protection?

c) Timer interrupts?

Second question
 What would be the main disadvantage of a

processor that would not have (3×5 points)
a) Separate supervisor and user modes?
 We could not prevent user programs

from directly accessing the disk
b) Memory protection?
 We could not prevent user programs

from corrupting the kernel
c) Timer interrupts?

Second question
 What would be the main disadvantage of a

processor that would not have (3×5 points)
a) Separate supervisor and user modes?
 We could not prevent user programs

from directly accessing the disk
b) Memory protection?
 We could not prevent user programs

from corrupting the kernel
c) Timer interrupts?
 We could not prevent user programs

from monopolizing the CPU

Third question

 Add the missing code to the following
program to ensure it will always print:

• Child says hello!
Parent says hello!

 in that exact order. (3×5 points)

The program
#include <unistd.h>
#include <stdio.h>
void main() {

int pid;
if ((pid = fork()) == _____) {

printf("Child says hello!\n");
__________________________;

} // if
_______________________________;
printf("Parent says hello!\n");

} // main

The program
#include <unistd.h>
#include <stdio.h>
void main() {

int pid;
if ((pid = fork()) == __0__) {

printf("Child says hello!\n");
__________________________;

} // if
_______________________________;
printf("Parent says hello!\n");

} // main

The program
#include <unistd.h>
#include <stdio.h>
void main() {

int pid;
if ((pid = fork()) == 0) {

printf("Child says hello!\n");
_exit(0); // to terminate the child

} // if
________________________;
printf("Parent says hello!\n");

} // main

The program
#include <unistd.h>
#include <stdio.h>
void main() {

int pid;
if ((pid = fork()) == 0) {

printf("Child says hello!\n");
_exit(0); // to terminate the child

} // if
wait(0); // wait first for child completion
printf("Parent says hello!\n");

} // main

Fourth question

 What does a program do when it receives a
signal? (5 points)

 What can we do to change this behavior?
(5 points)

 Is it always possible? (5 points)

Fourth question

 What does a process do when it receives a
signal? (5 points)
 It terminates

 What can we do to change this behavior?
(5 points)

 Is it always possible? (5 points)

Fourth question

 What does a process do when it receives
a signal? (5 points)

 It terminates
 What can we do to change this behavior?

(5 points)
 Process can catch the signal using

signal()
 Is it always possible? (5 points)

Fourth question

 What does a process do when it receives
a signal? (5 points)

 It terminates
 What can we do to change this behavior?

(5 points)
 Process can catch the signal using

signal(…) systeem call
 Is it always possible? (5 points)

 SIGKIL signal cannot be caught

Fifth question

 How will the following code fragment affect
stdin, stdout and stderr? (3×5 points)

The code

 int fda, fdb;
fda = open("alpha", O_RDWR | O_CREAT, 0640);
fdb = open("beta" , O_RDWR | O_CREAT, 0640);
close(0);
dup(fda);
close(1);
dup(fdb);

The code

 int fda, fdb;
fda = open("alpha", O_RDWR | O_CREAT, 0640);
fdb = open("beta" , O_RDWR | O_CREAT, 0640);
close(0);
dup(fda); // fda duplicated into stdin
close(1);
dup(fdb);
stdin will read from file "alpha"

The code

 int fda, fdb;
fda = open("alpha", O_RDWR | O_CREAT, 0640);
fdb = open("beta" , O_RDWR | O_CREAT, 0640);
close(0);
dup(fda); // fda duplicated into stdin
close(1);
dup(fdb); // fdb duplicated into stdout
stdin will read from file "alpha"
stdout will be redirected to file "beta"

The code

 int fda, fdb;
fda = open("alpha", O_RDWR | O_CREAT, 0640);
fdb = open("beta" , O_RDWR | O_CREAT, 0640);
close(0);
dup(fda); // fda duplicated into stdin
close(1);
dup(fdb); // fdb duplicated into stdout
stdin will read from file "alpha"
stdout will be redirected to file "beta"
stderr will be unchanged

Sixth question

 What happens when a user-level thread
does a blocking system call? (5 points)

 What can we do to avoid that? (5 points)

Sixth question

 What happens when a user-level thread
does a blocking system call? (5 points)

• The CPU scheduler will put the whole
process into the waiting state even
when other threads are ready to run

 What can we do to avoid that? (5 points)

Sixth question

 What happens when a user-level thread
does a blocking system call? (5 points)

• The CPU scheduler will put the whole
process into the waiting state even
when other threads are ready to run

 What can we do to avoid that? (5 points)
 The programmer cannot use blocking

system calls
 Use kernel-supported threads

