NAME:		(FIRS	(FIRST NAME FIRST) SCORE:	
		First Quiz	JUNE 17, 2014	
	This exam is close	ed book. You can have one page of notes.	UH expels cheaters.	
1. Qu	estions with Short Answer	s: (6×5 points)		
(a)	Why would a process <i>interrupt itself</i> ?			
	To make a system call.			
(b)	Why is <i>memory protection</i>	<i>n</i> always implemented in hardware?		
	Because it has be done f	or very memory reference and must thus	be done very fast.	
(c)		EUNIX signal() system call?	default is to terminate.	
(d)	In which <i>state</i> is a process In the READY state.	s waiting for the CPU?		
(e)	Which feature of UNIX m	nade it <i>more portable</i> than previous operatin level language—C—rather than in assembl		
(f)	•	rograms using kernel-supported threads tha		
	sharing the same addres	s space to the WAITING state		

1

T: ____

2.

Advantage and disadvantages: you will get no credit if you answer mentions a disadvantage when an advantage is asked and vice versa. (6×5 points)				
(a) V	(a) What is the main advantage of <i>all lightweight processes</i> over <i>regular processes</i> ?			
-	They are much cheaper to create than regular processes because the kernel does not have to			
<u>c</u>	create a new address space for each thread.			
(b) V	What is the main disadvantage of <i>monolithic kernels</i> ?			
-	They are fairly complex and hard to maintain.			
(c) V	What is the main advantage of <i>multithreaded servers</i> ?			
-	They can handle several requests in parallel.			
(d) V	What is the main advantage of <i>dual-mode processors</i> ?			
<u>1</u>	Dual-mode processors prevent user processes from performing themselves I/O operations by			
<u>r</u>	making all I/O instructions privileged instructions that can only be executed by the kernel.			
(e) V	What is the major advantage of microkernels?			
<u>/</u>	Microkernels allow kernel extensions to run in user space, which prevents them from crashing the			
<u> </u>	kernel. (Also: Microkernels are smaller, more manageable and easier to secure.)			
(f) V	What is the main advantage of <i>symmetric multiprocessing</i> over <i>master/slave organizations</i> ?			
<u>/</u>	All processors can run kernel code, which avoids one potential bottleneck.			

3. How many lines will this program print? (5 points)

```
int main(){
     if (fork() == 0) {
          printf("Hello World!\n");
     }
     printf("Goodbye!\n")
} // main
```

Answer: three lines

4. What should the OS do when there is *not enough free memory*? (5 points)

It should swap out some processes and send them the SUSPENDED state.

Which processes are the *best candidates* for this action? (5 points)

The processes that have been for a long time in the WAITING state as well as VERY LOW priority

processes,

And the worst candidates? (5 points)

READY processes.

- **5.** Give examples of *real-time processes* with: $(2\times5 \text{ points})$
 - (a) Hard deadlines: Process control, airplane navigation, ...
 - (b) Soft deadlines: MP3 and video players.
- **6.** How would you redirect the *output* of a program to the file **logfile.txt**? (2×5 points)

```
fd = open("logfile.txt", O_WRONLY | O_CREAT, 0644);
close(1); // we close stdout
```

 $\frac{\text{dup(fd)}}{\text{close(fd)}}$; we create a duplicate of fs into the first free descriptor, which happens to be stdin close(fd);