
COSC 3360/6310
FIRST QUIZ
ANSWERS

Jehan-François Pâris
jfparis@uh.edu
Summer 2019

First question

 How can we prevent a process from writing into
the address space of another process?

First question

 How can we prevent a process from writing into
the address space of another process?

Memory protection
 It checks every reference issued by a core

First question

 What made UNIX more portable than its
predecessors?

First question

 What made UNIX more portable than its
predecessors?

 It was written in a high-level language.

 Its source code was available.

First question

 How do processors switch from user mode to
privileged mode?

First question

 How do processors switch from user mode to
privileged mode?

Through the interrupt mechanism

By doing a system call (still full credit)

First question

 Why do most operating systems on the market
continue to use monolithic kernels?

First question

 Why do most operating systems on the market
continue to use monolithic kernels?

Because they are faster.

First question

 Why is fork() one of the most expensive system
calls?

First question

 Why is fork() one of the most expensive system
calls?

Because it has to create a new address
space and fill it with an exact copy of the
parent address space.

First question

 What happens when a process does a wait(…)
on a child process that has already terminated?

First question

 What happens when a process does a wait(…)
on a child process that has already terminated?

 It keeps going without further delay.

Second question

 Main advantage of timer interrupts:

Second question

 Main advantage of timer interrupts:

They prevent processes from
monopolizing a core.

Second question

 Main advantage of microkernels:

Second question

 Main advantage of microkernels:

They provide a safe mechanism for adding
new features to the kernel.

They are both safe and extensible

Second question

 Main advantage of dual-mode CPUs:

Second question

 Main advantage of dual-mode CPUs:

 They allow us to prevent user processes
from directly accessing hard drives and
other peripherals.

Second question

 Main disadvantage of user-level threads:

Second question

 Main disadvantage of user-level threads:

The kernel will block all threads of a
process each time any of them does a
blocking system call.

Second question

 Main disadvantage of non-preemptive
scheduling policies:

Second question

 Main disadvantage of non-preemptive
scheduling policies:

They let CPU-bound processes
monopolize cores.

Second question

 Main disadvantage of the round-robin
scheduling policy:

Second question

 Main disadvantage of the round-robin
scheduling policy:

 It performs poorly when the system is
heavily loaded.
Too many context switches

Third question

 What will the following program print out?

main() {
fork();
if (fork() == 0) {

cout << "Hello!\n";
_exit(0);

}
cout << "Goodbye!\n"

}

What will happen (II)

F
F
P (child)
P (parent)

F
P (child)
P (parent)

F
F
P (child)
P (parent)

F
P (child)
P (parent)

What will happen (III)

F
F
P (child)
P (parent)

F
P (child)
P (parent)

F
F
P (child)
P (parent)

F
P (child)
P (parent)

Third question

 The program will print out two “Hello!” and
two “Goodbye!”

Fourth question

 Complete the following sentences:
A running process will return to the ready

state if either

or

 It will go to the blocked state if

Fourth question

 Complete the following sentences:
A running process will return to the ready

state if either
a timer interrupt occurs
or
a higher priority process arrives

 It will go to the blocked state if

Fourth question

 Complete the following sentences:
A running process will return to the ready

state if either
a timer interrupt occurs
or
a higher priority process arrives

 It will go to the blocked state if
it performs a system call

Fourth question

 Complete the following sentences:

We can safely swap out processes that
have remained a long time in the blocked
state.

When a process does a blocking system
call, it remains in the blocked state until
the call is completed then goes to the
ready state.

Fifth question

 Why is it important to have a signal that no
process can catch?

Fifth question

 Why is it important to have a signal that no
process can catch?

We should be able to terminate all
processes.

Sixth question

 When should we suspend processes?

 Which processes are the best candidates for
being suspended?

Sixth question

 When should we suspend processes?
When we need to make space in main

memory.

 Which processes are the best candidates for
being suspended?

Sixth question

 When should we suspend processes?
When we need to make space in main

memory.

 Which processes are the best candidates for
being suspended?
Processes that have been in the BLOCKED

state for a long time.

