
SOLUTIONS FOR
THE SECOND
4330/6310 QUIZ

Jehan-François Pâris
Spring 2015

First Question

 Consider the following solution to the mutual exclusion
problem and explain when it fails (5 points) and what
happens then. (5 points)

 shared int locked[2] = {0, 0}; // global variable
 void enter_region(int pid) { // always 0 or 1

while (locked [1 - pid]); // busy wait
locked[pid] = 1; // reserve

} // enter_region
 void leave_region(int pid) {

locked[pid] = 0;
} // leave_region

Answer

 When two processes arrive in lockstep

then both processes will enter the critical
region.

Alternate first question

 Consider the following solution to the mutual exclusion
problem and explain when it fails (5 points) and what
happens then. shared int locked[2] = {0, 0}; // global
variable

 void enter_region(int pid) { // always 0 or 1
locked[pid] = 1; // reserve
while (locked [1 - pid]); // busy wait

} // enter_region
 void leave_region(int pid) {

locked[pid] = 0;
} // leave_region

Answer

 When two processes arrive in lockstep

then we have a deadlock.

Second question

 Consider the function
 void squarethem(int *pa, int *pb) {

*pa = (*pa)*(*pa);
*pb = (*pb)*(*pb);

} // squarethem
and assume the following calling sequence:
 int alpha = 2;

squarethem (&alpha, &alpha);

Passing by reference

Caller:
…
…

alpha

*pa = (*pa)*(*pa);
*pb = (*pb)*(*pb);

Procedure will
square twice variable
alpha

Passing by value and result

Caller:
…
…

alpha

*pa = (*pa)*(*pa);
*pb = (*pb)*(*pb);

Procedure will
square twice value 2

2, 2

4, 4

Second question

 What will be the value of alpha after the call
assuming that the call was:
 A conventional procedure call?

 alpha = 2×2×4 = 16
 A remote procedure call?

 alpha = 2×2 = 4

Alternate second question

 Assume now alpha = 3
 What will be the value of alpha after the call

assuming that the call was:
 A conventional procedure call?

 alpha = 3×3×9 = 81
 A remote procedure call?

 alpha = 3×3 = 9

Third question

 Most scheduling policies decrease the priority of
processes that have exhausted their slice of CPU time.

 Most programmers like to put all their signal operations
at the end of their monitor procedures.

 Peterson's algorithm assumes the existence of shared
variables.

 One cannot initialize binary semaphores.
 You cannot combine non-blocking sends and blocking

receives.

Third question

 TRUE: Most scheduling policies decrease the priority of
processes that have exhausted their slice of CPU time.

 Most programmers like to put all their signal operations
at the end of their monitor procedures.

 Peterson's algorithm assumes the existence of shared
variables.

 One cannot initialize binary semaphores.
 You cannot combine non-blocking sends and blocking

receives.

Third question

 TRUE: Most scheduling policies decrease the priority of
processes that have exhausted their slice of CPU time.

 TRUE: Most programmers like to put all their signal
operations at the end of their monitor procedures.

 Peterson's algorithm assumes the existence of shared
variables.

 One cannot initialize binary semaphores.
 You cannot combine non-blocking sends and blocking

receives.

Third question

 TRUE: Most scheduling policies decrease the priority of
processes that have exhausted their slice of CPU time.

 TRUE: Most programmers like to put all their signal
operations at the end of their monitor procedures.

 TRUE: Peterson's algorithm assumes the existence of
shared variables.

 One cannot initialize binary semaphores.
 You cannot combine non-blocking sends and blocking

receives.

Third question

 TRUE: Most scheduling policies decrease the priority of
processes that have exhausted their slice of CPU time.

 TRUE: Most programmers like to put all their signal
operations at the end of their monitor procedures.

 TRUE: Peterson's algorithm assumes the existence of
shared variables.

 FALSE: One cannot initialize binary semaphores.
 You cannot combine non-blocking sends and blocking

receives

Third question

 TRUE: Most scheduling policies decrease the priority of
processes that have exhausted their slice of CPU time.

 TRUE: Most programmers like to put all their signal
operations at the end of their monitor procedures.

 TRUE: Peterson's algorithm assumes the existence of
shared variables.

 FALSE: One cannot initialize binary semaphores.
 FALSE:You cannot combine non-blocking sends and

blocking receives.

Alternate third question

 Most scheduling policies increase the priority of
processes that have exhausted their slice of CPU time.

 Most programmers like to put all their notify operations
at the end of their monitor procedures.

 Peterson's algorithm assumes the existence of shared
variables.

 One cannot initialize monitor conditions.
 You cannot combine non-blocking sends and blocking

receives.

Alternate third question

 FALSE: Most scheduling policies increase the priority
of processes that have exhausted their slice of CPU
time.

 Most programmers like to put all their notify operations
at the end of their monitor procedures.

 Peterson's algorithm assumes the existence of shared
variables.

 One cannot initialize monitor conditions.
 You cannot combine non-blocking sends and blocking

receives.

Alternate third question

 FALSE: Most scheduling policies increase the priority
of processes that have exhausted their slice of CPU
time.

 FALSE: Most programmers like to put all their notify
operations at the end of their monitor procedures.

 Peterson's algorithm assumes the existence of shared
variables.

 One cannot initialize monitor conditions.
 You cannot combine non-blocking sends and blocking

receives.

Alternate third question

 FALSE: Most scheduling policies increase the priority
of processes that have exhausted their slice of CPU
time.

 FALSE: Most programmers like to put all their notify
operations at the end of their monitor procedures.

 TRUE: Peterson's algorithm assumes the existence of
shared variables.

 One cannot initialize monitor conditions.
 You cannot combine non-blocking sends and blocking

receives.

Alternate third question

 FALSE: Most scheduling policies increase the priority
of processes that have exhausted their slice of CPU
time.

 FALSE: Most programmers like to put all their notify
operations at the end of their monitor procedures.

 TRUE: Peterson's algorithm assumes the existence of
shared variables.

 TRUE: One cannot initialize monitor conditions.
 You cannot combine non-blocking sends and blocking

receives,

Alternate third question

 FALSE: Most scheduling policies increase the priority
of processes that have exhausted their slice of CPU
time.

 FALSE: Most programmers like to put all their notify
operations at the end of their monitor procedures.

 TRUE: Peterson's algorithm assumes the existence of
shared variables.

 TRUE: One cannot initialize monitor conditions.
 FALSE: You cannot combine non-blocking sends and

blocking receives,

Fourth question

 A cruising boat can carry up to 80 passengers.
These passengers can embark or debark
through a narrow gangway that can
accommodate one person at a time

 Complete the two following monitor procedures
to ensure that neither the boat nor its gangway
will ever be overloaded.

 class Boat {
private int npassengers ;
private condition notfull;

Answer

 public synchronized void embark(){
if (npassengers == 80)

notfull.wait;
npassengers++;

walk();
} //embark

 public synchronized void debark(){
walk();
npassengers--;
notfull.signal;

} //debark

Fifth question

 What are the sole correct values of X, Y and Z in
the following System V.4 scheduler:

 #ts_quantum ts_tqexp ts_slpret ts_maxwait ts_lwait LVL
1000 X 1 50000 1 # 0
500 0 2 20000 2 # 1
200 1 3 10000 3 # 2
100 2 Y 10000 Z # 3

Fifth question

 What are the sole correct values of X, Y and Z in
the following System V.4 scheduler:

 #ts_quantum ts_tqexp ts_slpret ts_maxwait ts_lwait LVL
1000 X 1 50000 1 # 0
500 0 2 20000 2 # 1
200 1 3 10000 3 # 2
100 2 Y 10000 Z # 3

 X = 0
 Y = 3
 Z = 3

Alternate fifth question

 What are the sole correct values of X, Y and Z in
the following System V.4 scheduler:

 #ts_quantum ts_tqexp ts_slpret ts_maxwait ts_lwait LVL
1000 X 1 50000 1 # 0
500 0 2 20000 2 # 1
200 1 3 10000 3 # 2
100 2 4 10000 4 # 3
100 3 Y 10000 Z # 4

Alternate fifth question

 What are the sole correct values of X, Y and Z in
the following System V.4 scheduler:

 #ts_quantum ts_tqexp ts_slpret ts_maxwait ts_lwait LVL
1000 X 1 50000 1 # 0
500 0 2 20000 2 # 1
200 1 3 10000 3 # 2
100 2 4 10000 4 # 3
100 3 Y 10000 Z # 4

 X = 0
 Y = 4
 Z = 4

Sixth question

 What is the main disadvantage of the round-
robin CPU scheduling policy?

 It causes too may context switches when
the system is heavily loaded.

Sixth question

 Why does the web http protocol use streams
instead of datagrams?

Because replies from an http server will
not always fit in a single packet and we
want these packets to arrive to the client in
order without lost packets, damaged
packets or duplicates.

Sixth question

 What is the main disadvantage of non
preemptive CPU scheduling policies?

They let CPU-bound processes
monopolize the CPUs.

Sixth question

 What is the main disadvantage of spin locks?

They waste CPU cycles while waiting for
the lock (and generate context switches).

Sixth question

 What is the difference between virtual circuits
and streams?

Virtual circuits preserve message
boundaries while streams do not.

Sixth question

 What us the difference between a blocking
receive and a non-blocking receive?

A blocking receive waits until the process
receives a message while a non-blocking
receive does not.

Sixth question

 What us the difference between a blocking
send and a non-blocking send?

A blocking send does not return until the
message has been delivered to its
recipient.

Sixth question

 How can you implement the at most once
semantics in a remote procedure call package?

We should attach a sequence number to
each message sent by a specific client and
instruct the server to reject requests with
duplicate sequence numbers.

