
SOLUTIONS FOR
THE SECOND
4330/6310 QUIZ

Jehan-François Pâris
Spring 2015

First Question

 Consider the following solution to the mutual exclusion
problem and explain when it fails (5 points) and what
happens then. (5 points)

 shared int locked[2] = {0, 0}; // global variable
 void enter_region(int pid) { // always 0 or 1

while (locked [1 - pid]); // busy wait
locked[pid] = 1; // reserve

} // enter_region
 void leave_region(int pid) {

locked[pid] = 0;
} // leave_region

Answer

 When two processes arrive in lockstep

then both processes will enter the critical
region.

Alternate first question

 Consider the following solution to the mutual exclusion
problem and explain when it fails (5 points) and what
happens then. shared int locked[2] = {0, 0}; // global
variable

 void enter_region(int pid) { // always 0 or 1
locked[pid] = 1; // reserve
while (locked [1 - pid]); // busy wait

} // enter_region
 void leave_region(int pid) {

locked[pid] = 0;
} // leave_region

Answer

 When two processes arrive in lockstep

then we have a deadlock.

Second question

 Consider the function
 void squarethem(int *pa, int *pb) {

*pa = (*pa)*(*pa);
*pb = (*pb)*(*pb);

} // squarethem
and assume the following calling sequence:
 int alpha = 2;

squarethem (&alpha, &alpha);

Passing by reference

Caller:
…
…

alpha

*pa = (*pa)*(*pa);
*pb = (*pb)*(*pb);

Procedure will
square twice variable
alpha

Passing by value and result

Caller:
…
…

alpha

*pa = (*pa)*(*pa);
*pb = (*pb)*(*pb);

Procedure will
square twice value 2

2, 2

4, 4

Second question

 What will be the value of alpha after the call
assuming that the call was:
 A conventional procedure call?

 alpha = 2×2×4 = 16
 A remote procedure call?

 alpha = 2×2 = 4

Alternate second question

 Assume now alpha = 3
 What will be the value of alpha after the call

assuming that the call was:
 A conventional procedure call?

 alpha = 3×3×9 = 81
 A remote procedure call?

 alpha = 3×3 = 9

Third question

 Most scheduling policies decrease the priority of
processes that have exhausted their slice of CPU time.

 Most programmers like to put all their signal operations
at the end of their monitor procedures.

 Peterson's algorithm assumes the existence of shared
variables.

 One cannot initialize binary semaphores.
 You cannot combine non-blocking sends and blocking

receives.

Third question

 TRUE: Most scheduling policies decrease the priority of
processes that have exhausted their slice of CPU time.

 Most programmers like to put all their signal operations
at the end of their monitor procedures.

 Peterson's algorithm assumes the existence of shared
variables.

 One cannot initialize binary semaphores.
 You cannot combine non-blocking sends and blocking

receives.

Third question

 TRUE: Most scheduling policies decrease the priority of
processes that have exhausted their slice of CPU time.

 TRUE: Most programmers like to put all their signal
operations at the end of their monitor procedures.

 Peterson's algorithm assumes the existence of shared
variables.

 One cannot initialize binary semaphores.
 You cannot combine non-blocking sends and blocking

receives.

Third question

 TRUE: Most scheduling policies decrease the priority of
processes that have exhausted their slice of CPU time.

 TRUE: Most programmers like to put all their signal
operations at the end of their monitor procedures.

 TRUE: Peterson's algorithm assumes the existence of
shared variables.

 One cannot initialize binary semaphores.
 You cannot combine non-blocking sends and blocking

receives.

Third question

 TRUE: Most scheduling policies decrease the priority of
processes that have exhausted their slice of CPU time.

 TRUE: Most programmers like to put all their signal
operations at the end of their monitor procedures.

 TRUE: Peterson's algorithm assumes the existence of
shared variables.

 FALSE: One cannot initialize binary semaphores.
 You cannot combine non-blocking sends and blocking

receives

Third question

 TRUE: Most scheduling policies decrease the priority of
processes that have exhausted their slice of CPU time.

 TRUE: Most programmers like to put all their signal
operations at the end of their monitor procedures.

 TRUE: Peterson's algorithm assumes the existence of
shared variables.

 FALSE: One cannot initialize binary semaphores.
 FALSE:You cannot combine non-blocking sends and

blocking receives.

Alternate third question

 Most scheduling policies increase the priority of
processes that have exhausted their slice of CPU time.

 Most programmers like to put all their notify operations
at the end of their monitor procedures.

 Peterson's algorithm assumes the existence of shared
variables.

 One cannot initialize monitor conditions.
 You cannot combine non-blocking sends and blocking

receives.

Alternate third question

 FALSE: Most scheduling policies increase the priority
of processes that have exhausted their slice of CPU
time.

 Most programmers like to put all their notify operations
at the end of their monitor procedures.

 Peterson's algorithm assumes the existence of shared
variables.

 One cannot initialize monitor conditions.
 You cannot combine non-blocking sends and blocking

receives.

Alternate third question

 FALSE: Most scheduling policies increase the priority
of processes that have exhausted their slice of CPU
time.

 FALSE: Most programmers like to put all their notify
operations at the end of their monitor procedures.

 Peterson's algorithm assumes the existence of shared
variables.

 One cannot initialize monitor conditions.
 You cannot combine non-blocking sends and blocking

receives.

Alternate third question

 FALSE: Most scheduling policies increase the priority
of processes that have exhausted their slice of CPU
time.

 FALSE: Most programmers like to put all their notify
operations at the end of their monitor procedures.

 TRUE: Peterson's algorithm assumes the existence of
shared variables.

 One cannot initialize monitor conditions.
 You cannot combine non-blocking sends and blocking

receives.

Alternate third question

 FALSE: Most scheduling policies increase the priority
of processes that have exhausted their slice of CPU
time.

 FALSE: Most programmers like to put all their notify
operations at the end of their monitor procedures.

 TRUE: Peterson's algorithm assumes the existence of
shared variables.

 TRUE: One cannot initialize monitor conditions.
 You cannot combine non-blocking sends and blocking

receives,

Alternate third question

 FALSE: Most scheduling policies increase the priority
of processes that have exhausted their slice of CPU
time.

 FALSE: Most programmers like to put all their notify
operations at the end of their monitor procedures.

 TRUE: Peterson's algorithm assumes the existence of
shared variables.

 TRUE: One cannot initialize monitor conditions.
 FALSE: You cannot combine non-blocking sends and

blocking receives,

Fourth question

 A cruising boat can carry up to 80 passengers.
These passengers can embark or debark
through a narrow gangway that can
accommodate one person at a time

 Complete the two following monitor procedures
to ensure that neither the boat nor its gangway
will ever be overloaded.

 class Boat {
private int npassengers ;
private condition notfull;

Answer

 public synchronized void embark(){
if (npassengers == 80)

notfull.wait;
npassengers++;

walk();
} //embark

 public synchronized void debark(){
walk();
npassengers--;
notfull.signal;

} //debark

Fifth question

 What are the sole correct values of X, Y and Z in
the following System V.4 scheduler:

 #ts_quantum ts_tqexp ts_slpret ts_maxwait ts_lwait LVL
1000 X 1 50000 1 # 0
500 0 2 20000 2 # 1
200 1 3 10000 3 # 2
100 2 Y 10000 Z # 3

Fifth question

 What are the sole correct values of X, Y and Z in
the following System V.4 scheduler:

 #ts_quantum ts_tqexp ts_slpret ts_maxwait ts_lwait LVL
1000 X 1 50000 1 # 0
500 0 2 20000 2 # 1
200 1 3 10000 3 # 2
100 2 Y 10000 Z # 3

 X = 0
 Y = 3
 Z = 3

Alternate fifth question

 What are the sole correct values of X, Y and Z in
the following System V.4 scheduler:

 #ts_quantum ts_tqexp ts_slpret ts_maxwait ts_lwait LVL
1000 X 1 50000 1 # 0
500 0 2 20000 2 # 1
200 1 3 10000 3 # 2
100 2 4 10000 4 # 3
100 3 Y 10000 Z # 4

Alternate fifth question

 What are the sole correct values of X, Y and Z in
the following System V.4 scheduler:

 #ts_quantum ts_tqexp ts_slpret ts_maxwait ts_lwait LVL
1000 X 1 50000 1 # 0
500 0 2 20000 2 # 1
200 1 3 10000 3 # 2
100 2 4 10000 4 # 3
100 3 Y 10000 Z # 4

 X = 0
 Y = 4
 Z = 4

Sixth question

 What is the main disadvantage of the round-
robin CPU scheduling policy?

 It causes too may context switches when
the system is heavily loaded.

Sixth question

 Why does the web http protocol use streams
instead of datagrams?

Because replies from an http server will
not always fit in a single packet and we
want these packets to arrive to the client in
order without lost packets, damaged
packets or duplicates.

Sixth question

 What is the main disadvantage of non
preemptive CPU scheduling policies?

They let CPU-bound processes
monopolize the CPUs.

Sixth question

 What is the main disadvantage of spin locks?

They waste CPU cycles while waiting for
the lock (and generate context switches).

Sixth question

 What is the difference between virtual circuits
and streams?

Virtual circuits preserve message
boundaries while streams do not.

Sixth question

 What us the difference between a blocking
receive and a non-blocking receive?

A blocking receive waits until the process
receives a message while a non-blocking
receive does not.

Sixth question

 What us the difference between a blocking
send and a non-blocking send?

A blocking send does not return until the
message has been delivered to its
recipient.

Sixth question

 How can you implement the at most once
semantics in a remote procedure call package?

We should attach a sequence number to
each message sent by a specific client and
instruct the server to reject requests with
duplicate sequence numbers.

