
SOLUTIONS FOR
THE SECOND 4330
QUIZ

Jehan-Francois Paris
Summer 2014

First question

 A cruising boat can carry up to 80 passengers.
These passengers can embark or debark
through a narrow gangway that can
accommodate one person at a time.

 Add the required semaphore calls to the
following two functions to ensure that the boat
nor its gangway will never be overloaded.
(30 points)

First question

 semaphore boat = 80;
semaphore gangway = 1;

 embark(){ debark()(
________; ________;
________; ________;
walk(); walk();
________; _________;
_________; _________;

} //embark } //debark

Let us put first the mutex calls

 semaphore boat = 80;
semaphore gangway = 1;

 embark(){ debark()(
________; ________;
P(&gangway); P(&gangway);
walk(); walk();
V(&gangway); V(&gangway);
_________; _________;

} //embark } //debark

Then the two other calls

 semaphore boat = 40;
semaphore gangway = 1;

 embark(){ debark()(
P(&boat); ________;
P(&gangway); P(&gangway);
walk(); walk();
V(&gangway); V(&gangway);
_________; V(&boat);

} //embark } //debark

Second question

 Consider the following System V.4 scheduler:
#ts_quantum ts_tqexp ts_slpret ts_maxwait ts_lwait LVL

1000 0 1 50000 1 # 0

500 0 2 20000 2 # 1

200 1 3 10000 3 # 2

100 2 3 10000 3 # 3

 Which priority levels will be visited by a process
that starts at level 1, waits for 20 seconds,
requests 80ms of CPU time and and does an I/O
request (2×5 points)

Answer
#ts_quantum ts_tqexp ts_slpret ts_maxwait ts_lwait LVL

1000 0 1 50000 1 # 0

500 0 2 20000 2 # 1

200 1 3 10000 3 # 2

100 2 3 10000 3 # 3

 Which priority levels will be visited by a process
that starts at level 1, waits for 20 seconds,
requests 80ms of CPU time and does an I/O
request (2×5 points)

 Goes from level 1 to level 2 because ts_lwait
Goes from level 2 to level 3 because ts_slpret

Third question

 What is the main disadvantage of the round-
robin CPU scheduling policy?

Third question

 What is the main disadvantage of the round-
robin CPU scheduling policy?

 It causes too many context switches at
medium to high CPU loads
Because we want to keep a good response

time for interactive requests

Third question

 Of all four necessary conditions for
deadlocks, which one is the easiest to deny?

Third question

 Of all four necessary conditions for
deadlocks, which one is the easiest to deny?

Circular wait

Third question

 What is the main advantage of datagrams over
virtual circuits and streams?

Third question

 What is the main advantage of datagrams over
virtual circuits and streams?

Much lower overhead

Third question

 How can you simulate a blocking receive using
only non-blocking primitives?

Third question

 How can you simulate a blocking receive using
only non-blocking primitives?

Using a busy wait:
while(receive(mbox, buffer, nbytes) ==NO_MSG);

Third question

 Why do notify primitives are safer to use than the
older signal primitives?

Third question

 Why do notify primitives are safer to use than the
older signal primitives?

Because a notify call never interrupts the
procedure calling it

Third question

 What is the best way to prevent starvation in
scheduling policies implementing variable
priorities?

Third question

 What is the best way to prevent starvation in
scheduling policies implementing variable
priorities?

We should increase the priorities of processes
that have waited for too long in the ready queue

Fourth question

 Consider the following solution to the mutual
exclusion problem and explain when it fails
(5 points) and what happens then. (5 points)

Fourth question

 shared int reserved[2] = {0, 0}; // global var
 void enter_region(int pid) { // 0 or 1

int other;
other = 1 - pid; // pid of other process
reserved[pid] = 1; // reserve
while (reserved[other]); // busy wait
reserved[pid] = 1; // reserve

} // enter_region
 void leave_region(int pid) {

reserved[pid] = 0;
} // leave_region

Fourth question

 shared int reserved[2] = {0, 0}; // global var
 void enter_region(int pid) { // 0 or 1

int other;
other = 1 - pid; // pid of other process
reserved[pid] = 1; // reserve
while (reserved[other]); // busy wait
reserved[pid] = 1; // reserve

} // enter_region
 void leave_region(int pid) {

reserved[pid] = 0;
} // leave_region

The two
critical
lines

Fourth question

 shared int reserved[2] = {0, 0}; // global var
 void enter_region(int pid) { // 0 or 1

int other;
other = 1 - pid; // pid of other process
reserved[pid] = 1; // reserve
while (reserved[other]); // busy wait
reserved[pid] = 1; // reserve

} // enter_region
 void leave_region(int pid) {

reserved[pid] = 0;
} // leave_region

Reserve
then

check:
risk of

deadlock

No tie-
breaker

Final answer

 Solution will cause a deadlock when two
processes attempt to enter the critical section in
lockstep.

Fifth question

 Consider the function
 void badexchange(int *pa, int *pb) {

*pa = *pb;
*pb *= *pa;

} // badexchange
and assume the following calling sequence:
 alpha = 3; beta = 5;

badexchange (&alpha, &beta);

Fifth question

 What will be the value of alpha and beta after
the call assuming that the call was:

 A conventional procedure call? (5 points)

alpha = ________ beta = ________

 A remote procedure call? (5 points)

alpha = ________ beta = ________

The hard case
 Given
void badexchange(int *pa, int *pb) {

*pa = *pb;
*pb *= *pa;

} // badexchange
and the calling sequence
alpha = 3; beta = 5

badexchange (&alpha, &beta);
a conventional call would return
 alpha = 5 and beta = 25

The easy case

 Given
void badexchange(int *pa, int *pb) {

*pa = *pb;
*pb *= *pa;

} // badexchange
and the calling sequence
alpha = 3; beta = 5;

badexchange (&alpha, &beta);
an RPC would return
 alpha = 5 and beta = 25

Sixth question

 What is the main advantage of the all or
nothing RPC model over the at most once
model? (5 points)

 What is its sole disadvantage ? (5 points)

Sixth question

 What is the main advantage of the all or
nothing RPC model over the at most once
model? (5 points)
 It eliminates the risk of partial executions

of the request
 Crucial for financial transactions.

 What is its sole disadvantage ? (5 points)
 Its high overhead

