
SOLUTIONS FOR
THE SECOND 4330
QUIZ

Jehan-Francois Paris
Summer 2014

First question

 A cruising boat can carry up to 80 passengers.
These passengers can embark or debark
through a narrow gangway that can
accommodate one person at a time.

 Add the required semaphore calls to the
following two functions to ensure that the boat
nor its gangway will never be overloaded.
(30 points)

First question

 semaphore boat = 80;
semaphore gangway = 1;

 embark(){ debark()(
________; ________;
________; ________;
walk(); walk();
________; _________;
_________; _________;

} //embark } //debark

Let us put first the mutex calls

 semaphore boat = 80;
semaphore gangway = 1;

 embark(){ debark()(
________; ________;
P(&gangway); P(&gangway);
walk(); walk();
V(&gangway); V(&gangway);
_________; _________;

} //embark } //debark

Then the two other calls

 semaphore boat = 40;
semaphore gangway = 1;

 embark(){ debark()(
P(&boat); ________;
P(&gangway); P(&gangway);
walk(); walk();
V(&gangway); V(&gangway);
_________; V(&boat);

} //embark } //debark

Second question

 Consider the following System V.4 scheduler:
#ts_quantum ts_tqexp ts_slpret ts_maxwait ts_lwait LVL

1000 0 1 50000 1 # 0

500 0 2 20000 2 # 1

200 1 3 10000 3 # 2

100 2 3 10000 3 # 3

 Which priority levels will be visited by a process
that starts at level 1, waits for 20 seconds,
requests 80ms of CPU time and and does an I/O
request (2×5 points)

Answer
#ts_quantum ts_tqexp ts_slpret ts_maxwait ts_lwait LVL

1000 0 1 50000 1 # 0

500 0 2 20000 2 # 1

200 1 3 10000 3 # 2

100 2 3 10000 3 # 3

 Which priority levels will be visited by a process
that starts at level 1, waits for 20 seconds,
requests 80ms of CPU time and does an I/O
request (2×5 points)

 Goes from level 1 to level 2 because ts_lwait
Goes from level 2 to level 3 because ts_slpret

Third question

 What is the main disadvantage of the round-
robin CPU scheduling policy?

Third question

 What is the main disadvantage of the round-
robin CPU scheduling policy?

 It causes too many context switches at
medium to high CPU loads
Because we want to keep a good response

time for interactive requests

Third question

 Of all four necessary conditions for
deadlocks, which one is the easiest to deny?

Third question

 Of all four necessary conditions for
deadlocks, which one is the easiest to deny?

Circular wait

Third question

 What is the main advantage of datagrams over
virtual circuits and streams?

Third question

 What is the main advantage of datagrams over
virtual circuits and streams?

Much lower overhead

Third question

 How can you simulate a blocking receive using
only non-blocking primitives?

Third question

 How can you simulate a blocking receive using
only non-blocking primitives?

Using a busy wait:
while(receive(mbox, buffer, nbytes) ==NO_MSG);

Third question

 Why do notify primitives are safer to use than the
older signal primitives?

Third question

 Why do notify primitives are safer to use than the
older signal primitives?

Because a notify call never interrupts the
procedure calling it

Third question

 What is the best way to prevent starvation in
scheduling policies implementing variable
priorities?

Third question

 What is the best way to prevent starvation in
scheduling policies implementing variable
priorities?

We should increase the priorities of processes
that have waited for too long in the ready queue

Fourth question

 Consider the following solution to the mutual
exclusion problem and explain when it fails
(5 points) and what happens then. (5 points)

Fourth question

 shared int reserved[2] = {0, 0}; // global var
 void enter_region(int pid) { // 0 or 1

int other;
other = 1 - pid; // pid of other process
reserved[pid] = 1; // reserve
while (reserved[other]); // busy wait
reserved[pid] = 1; // reserve

} // enter_region
 void leave_region(int pid) {

reserved[pid] = 0;
} // leave_region

Fourth question

 shared int reserved[2] = {0, 0}; // global var
 void enter_region(int pid) { // 0 or 1

int other;
other = 1 - pid; // pid of other process
reserved[pid] = 1; // reserve
while (reserved[other]); // busy wait
reserved[pid] = 1; // reserve

} // enter_region
 void leave_region(int pid) {

reserved[pid] = 0;
} // leave_region

The two
critical
lines

Fourth question

 shared int reserved[2] = {0, 0}; // global var
 void enter_region(int pid) { // 0 or 1

int other;
other = 1 - pid; // pid of other process
reserved[pid] = 1; // reserve
while (reserved[other]); // busy wait
reserved[pid] = 1; // reserve

} // enter_region
 void leave_region(int pid) {

reserved[pid] = 0;
} // leave_region

Reserve
then

check:
risk of

deadlock

No tie-
breaker

Final answer

 Solution will cause a deadlock when two
processes attempt to enter the critical section in
lockstep.

Fifth question

 Consider the function
 void badexchange(int *pa, int *pb) {

*pa = *pb;
*pb *= *pa;

} // badexchange
and assume the following calling sequence:
 alpha = 3; beta = 5;

badexchange (&alpha, &beta);

Fifth question

 What will be the value of alpha and beta after
the call assuming that the call was:

 A conventional procedure call? (5 points)

alpha = ________ beta = ________

 A remote procedure call? (5 points)

alpha = ________ beta = ________

The hard case
 Given
void badexchange(int *pa, int *pb) {

*pa = *pb;
*pb *= *pa;

} // badexchange
and the calling sequence
alpha = 3; beta = 5

badexchange (&alpha, &beta);
a conventional call would return
 alpha = 5 and beta = 25

The easy case

 Given
void badexchange(int *pa, int *pb) {

*pa = *pb;
*pb *= *pa;

} // badexchange
and the calling sequence
alpha = 3; beta = 5;

badexchange (&alpha, &beta);
an RPC would return
 alpha = 5 and beta = 25

Sixth question

 What is the main advantage of the all or
nothing RPC model over the at most once
model? (5 points)

 What is its sole disadvantage ? (5 points)

Sixth question

 What is the main advantage of the all or
nothing RPC model over the at most once
model? (5 points)
 It eliminates the risk of partial executions

of the request
 Crucial for financial transactions.

 What is its sole disadvantage ? (5 points)
 Its high overhead

