SOLUTIONS TO THE SECOND 3360/6310 QUIZ

Jehan-François Pâris Summer 2016

First question

Consider the following System V Release 4 scheduler:

#ts_quantum	ts_tqexp	ts_slpret	ts_maxwait	ts_lwait	LVL
1000	0	1	16000	1	# 0
500	1	2	8000	2	# 1
200	1	3	4000	3	# 2
100	2	3	2000	3	# 3

- Which events can *increase* the priority of a process at *level* 2?
- □ Which events can *lower* it?

First question

Consider the following System V Release 4 scheduler:

#ts_quantum	ts_tqexp	ts_slpret	ts_maxwait	ts_lwait	LVL
1000	0	1	16000	1	#0
500	1	2	8000	2	# 1
200	1	3	4000	3	# 2
100	2	3	2000	3	# 3

- Which events can *increase* the priority of a process at *level* 2?
 - Process returns from the BLOCKED state
 - Process spends more than 4s in the READY state

First question

Consider the following System V Release 4 scheduler:

#ts_quantum	ts_tqexp	ts_slpret	ts_maxwait	ts_lwait	LVL
1000	0	1	16000	1	# 0
500	1	2	8000	2	# 1
200	1	3	4000	3	<mark>#</mark> 2
100	2	3	2000	3	# 3

- Which events can *lower* the priority of a process at *level* 2?
 - Process exceeded its 200ms processor time slice

Second question

Give an example of a data structure that is much costlier to pass to a remote procedure than to a regular procedure.

Second question

Give an example of a data structure that is much costlier to pass to a remote procedure than to a regular procedure.

Any dynamic structure
 Especially large ones!
 Any big array

What is the main difference between the signal and notify primitives?

- What is the main difference between the signal and notify primitives?
 - A signal will take control of the monitor away from the calling procedure if any other procedure was waiting on that signal
 - A notify will have no effect until the procedure releases the monitor

Which one is better and why?

- Which one is better and why?
 - Notify because it
 - Causes fewer context switches
 - Can be put anywhere in monitor procedures.

What is the major disadvantage of **busy waits**?

- What is the major disadvantage of **busy waits**?
 - Busy waits waste processor cycles and cause additional context switches
 - Can also cause **priority inversions**

What is the major advantage of streams over datagrams?

- What is the major advantage of streams over datagrams?
 - Stream are better than datagrams for transmitting large amounts of data because they guarantee that all data will arrive
 - Without errors
 - In the right order

How can we prevent deadlocks by *denying* the *circular wait condition*?

- How can we prevent deadlocks by *denying* the *circular wait condition*?
 - We should force all processes to acquire all resources in the same linear order

Why is *lottery scheduling* said to be *nondeterministic*?

Why is *lottery scheduling* said to be *nondeterministic*?

Because lottery scheduling runs a <u>lottery</u> to decide which process in the ready queue should get the CPU

What is the sole possible initial value for a mutex?

What is the sole possible initial value for a mutex?

- Recall that Pthread mutexes are automatically initialized to one
 - User has no other option

What is the difference between *blocking* sends and non-blocking sends?

- What is the difference between *blocking* sends and non-blocking sends?
 - Blocking sends wait until the message they send have been received by their destination
 - Non-blocking sends return as soon as their messages have been accepted for delivery

- A bar room has a maximum occupancy of 40 guests.
- Complete the following code fragments to ensure that
 - The room will never exceed its maximum occupancy,
 - All parties will always enter the room
 together in the order they arrived.

semaphore room = ___;
semaphore access = ___;

party_arrives (int nguests) {
 int i;

for (i = 0; i < nguests; i++)

get_all_inside();

} // party_arrives

} // party_leaves

- semaphore room = <u>40;</u>
 semaphore access = <u>1;</u> // mutex?
 - Semaphore room will represent the room capacity
 - Initially set at 40
 - Before entering the room, each guest must do a P(&room)
 - When he or she leaves the room, each guest must do a V(&room)

party_arrives (int nguests) {
 int i;

get_all_inside();

} // party_arrives

Still has problems

```
party_leaves (int nguests) {
    int i;
    for (i = 0; i < nguests ; i++)
    <u>V(&room);</u>
```

A remaining problem

- What if a small party arrives while a larger party is in the process of accessing the room semaphore?
 - □ Could get ahead
 - □ Must add a *mutex*

```
party_arrives (int nguests) {
    int i;
    P(&access);
    for (i = 0; i < nguests ; i++)
        P(&room);
    V(&access);
    get_all_inside();
    } // party_arrives</pre>
```

The correct solution

Sixth question

What are the major advantage and the major disadvantage of *atomic transactions*?

Sixth question

- What are the major advantage and the major disadvantage of *atomic transactions*?
 - Atomic transactions ensure that all remote procedure calls will either execute correctly of have no effect
 - Eliminate the risks of partial of duplicate executions
 - They are costly

Seventh question

- What are the two possible values for the register %eax after the instruction is executed and their meanings for the process that executed the instruction?
 - If %eax equals _____ then the process can enter the critical section.
 - If %eax equals _____ then the process must wait.

Seventh question

- What are the two possible values for the register %eax after the instruction is executed and their meanings for the process that executed the instruction?
 - If %eax equals 0 then the process can enter the critical section.
 - If %eax equals <u>1</u> then the process must wait.