N	AME:		_ (FIRST NAME <u>FIRST</u>)	Score:	
COSC 4330/6310 THIRD QUIZ		Third Quiz		May 5, 2014	
	THIS EXAM IS CLOSED BOO	K. YOU CAN HAVE ONE PAGE	OF NOTES. UH EXP	ELS CHEATERS.	
1.	A virtual memory system has 32-bit addresses. Given that 19 of these 32 bits are used by the page number,				
	(a) How many bits of the address	s are used by the <i>byte offset</i> (5 p	points)	32 - 19 = 13 bits	
	(b) What is the <i>page size</i> of the s	ystem? (5 points)		<u>2¹³ = 8K</u> bytes	
	(c) How <i>many pages</i> are there in a process address space? (5 points)			<u>2¹⁹ = 512K</u> pages	
2.	Consider a UNIX file called project.txt 1784 -rw-r 1 bob ssrg 1820900 May 4 09:15 report.txt and assume that the group ssrg contains the users alice, bob and carol.				
	(a) Which access rights are granted to user bob ? (5 points)			<u>read and write</u>	
	(b) Which access rights are grant	ted to user alice? (5 points)		<u>read only</u>	
3.	A 32-bit Berkeley UNIX file system has a block size of 4 kilobytes. How many <i>blocks—not bytes</i> —of a given file can be accessed:				
	(a) Using the block addresses sto	ored in the i-node? (5 points)	<u>1</u>	2 (that's easy!) blocks	
	(b) With one level of indirection	? (5 points)	4KB/4	4B = 1K = 1,024 blocks	
	(c) With two levels of indirection	n? (5 points)	(4K/4) ² - 1,024 -	12 = 1M -1,036 blocks	
	Explain in one line or less your answer to point (c) above. (5 points)				
	A 32-bit file cannot have more that 1M 4KB blocks.				
	Detail your computations here for	r possible partial credit:			

1

Total: _____/40 Check: ____/40

4. Questions with short answers: (6×5 poin

(a)	a) How can you prevent deadlocks by denying the <i>circular wait condition</i> ?	
	We will force all processes to acquire all resources in the same linear order.	

(b) Why does the *Windows* page replacement policy handle *real-time* processes *better* than other policies?

Because it assigns a minimum partition size to each process and can make this size large enough to accommodate the whole address space of a virtual process.

(c) Where do UNIX file systems store their access control lists?

In the file i-node.

(d) What is the purpose of the *dirty bit* in a virtual memory system?

To tell whether the page has been modified since the last time it was brought into main memory. o

OR To tell whether the page must be saved in the swap area when it is expelled from main memory.o

(e) What does the Berkeley Fast File System do to reduce *internal fragmentation*?

It allow blocks to be subdivided into fragments whose sizes can be equal to $\frac{1}{2}$, $\frac{1}{4}$ or 1/8 of a block. o (We speak here of internal fragmentation.)

(f) Why was a *second hand* added to the Berkeley page replacement policy?

To speed up the expulsion of stale pages without increasing the linear speed of the clock hand(s). o

(It would have resulted in an excessive number of context switches.) o

5. Advantages and disadvantages: (6×5 points)

You will get no credit if you mention an advantage instead of and advantage and vice versa.

(a) What is the main *disadvantage* of *LRU* page replacement policies?_____

Its excessively high overhead.

(b) What is the main advantage of inverted page tables?_____

Their size is proportional to the size of the system's physical memory instead of the size of the

(c) What is the main *disadvantage* of letting the *kernel handle TLB misses*? _____

process address spaces.

Each TLB miss will occasion two context switches.

(d) What is the *main advantage* of *cylinder groups* in the Berkeley Fast File System?_____

They keep the data blocks of each file closer to its i-node thus reducing disk seek times.

(e) What is the main disadvantage of simulating by software the page-referenced bit?______

Setting the page refrenced bit back to one when the page is reaccessed after having the bit was

cleared by the clock handle will cost three two context switches.

(f) What is the main advantage of mapped files?_____

We eliminate context switches by bringing file blocks directly into the address space of each

3

process that perform a file access.

Check: ____/30