SOLUTIONS FOR THE THIRD 3360/6310 QUIZ

Jehan-François Pâris Summer 2017

First question

- What is the main advantage and the main disadvantage of access control lists over tickets?
 - Main advantage of access control lists:

■ Main disadvantage of access control lists:

First question

- What is the main advantage and the main disadvantage of access control lists over tickets?
 - Main advantage of access control lists:
 - They are more flexible than tickets
 - Main disadvantage of access control lists:
 - They are much slower

What does an FFS cylinder group contain?

How do these cylinder groups improve the performance of the file system?

- What do FFS cylinder groups contain?
 - □ They contain both i-node blocks and data blocks
- How do these cylinder groups improve the performance of the file system?

- What do FFS cylinder groups contain?
 - □ They contain both i-node blocks and data blocks
- How do these cylinder groups improve the performance of the file system?

- What do FFS cylinder groups contain?
 - □ They contain both i-node blocks and data blocks
- How do these cylinder groups improve the performance of the file system?
 - □ They eliminate most long seeks by allocating to files data blocks in the same cylinder group as their i-nodes.

A virtual memory system has 48-bit addresses. Given that 13 of these 48 bits are used by the bit offset,

■ What is the *page size* of the system?

м

Third question

- A virtual memory system has 48-bit addresses. Given that 13 of these 48 bits are used by the bit offset,
 - What is the *page size* of the system?
 - $= 2^{13} = 8,192$ bytes

- A virtual memory system has 48-bit addresses. Given that 13 of these 48 bits are used by the bit offset,
 - How many bits of the virtual address are used by the page number?

- A virtual memory system has 48-bit addresses. Given that 13 of these 48 bits are used by the bit offset,
 - How many bits of the virtual address are used by the page number?

-48 - 13 = 35 bits

- A virtual memory system has 48-bit addresses. Given that 13 of these 48 bits are used by the bit offset,
 - On average, how much memory is lost to internal fragmentation?

- A virtual memory system has 48-bit addresses. Given that 13 of these 48 bits are used by the bit offset,
 - On average, how much memory is lost to internal fragmentation?
 - Half a page or 4,096 bytes

What is the main purpose of the UNIX mount primitive?

- What is the main purpose of the UNIX mount primitive?
 - □ To make the directory tree of a given disk partition appear as a subtree of the directory tree of another partition.
 - □ To <u>merge</u> the directory trees of multiple disk partitions into a single tree.

What is the major disadvantage of using *large* blocks in a file system?

What is the major disadvantage of using *large* blocks in a file system?

□ They increase internal fragmentation.

What is the major disadvantage of letting the kernel handle *TLB misses*?

What is the major disadvantage of letting the kernel handle *TLB misses*?

□ Each TLB miss will require two context switches.

What is the main advantage of journaling file systems using asynchronous log writes?

- What is the main advantage of journaling file systems using asynchronous log writes?
 - □ They are much faster than journaling file systems using synchronous log writes.

■ Why did BSD FFS introduce *block fragments*?

Why did BSD FFS introduce block fragments?

□ To reduce internal fragmentation.

When a user creates a new file, what should be written to disk first (a) the directory block containing the new entry for the file or (b) the inode block containing the new i-node?

- When a user creates a new file, what should be written to disk first (a) the directory block containing the new entry for the file or (b) the inode block containing the new i-node?
 - □ We should write first the i-node block containing the new i-node.

Fifth question

A virtual memory system uses 4KB pages and inverted page tables. Assuming that each page table entry occupies 24 bytes what is the fraction of main memory occupied by page tables?

Why 24 bytes?

Assuming 64-bit addresses, we will have 8 bytes for the page number, 8 bytes for the page frame number and 8 bytes for the address of the the next PTE in the bucket.

Fifth question

A virtual memory system uses 4KB pages and inverted page tables. Assuming that each page table entry occupies 24 bytes what is the fraction of main memory occupied by page tables?

 $\square 24/4,096 = 3/512 = 0.586 percent$

- Consider the two-handed BSD clock replacement policy.
 - □ What happens when the *first hand* of the clock reaches a *valid page*?

- Consider the two-handed BSD clock replacement policy.
 - □ What happens when the *first hand* of the clock reaches a *valid page*?
 - It marks it invalid.

- Consider the two-handed BSD clock replacement policy.
 - □ What happens when the second hand of the clock reaches a valid page?

- Consider the two-handed BSD clock replacement policy.
 - □ What happens when the **second hand** of the clock reaches a **valid page**?
 - Absolutely nothing.

- Consider the two-handed BSD clock replacement policy.
 - □ What happens when the second hand of the clock reaches a page that was marked invalid?

- Consider the two-handed BSD clock replacement policy.
 - □ What happens when the second hand of the clock reaches a page that was marked invalid?

It expels it.

Seventh question

- A 32-bit Berkeley UNIX file system has a block size of eight kilobytes.
- How many indirect blocks will be accessed through one level of indirection:
 - ☐ For a **54-kilobyte** file?
 - □ For a *two-megabyte* file?

Seventh question

- A 32-bit Berkeley UNIX file system has a block size of eight kilobytes.
- How many indirect blocks will be accessed through one level of indirection:
 - □ For a **54-kilobyte** file? **None**
 - (Can access 96 KB straight from i-node)
 - □ For a *two-megabyte* file?

Seventh question

- A 32-bit Berkeley UNIX file system has a block size of eight kilobytes.
- How many indirect blocks will be accessed through one level of indirection:
 - □ For a **54-kilobyte** file? **None**
 - (Can access 96 KB straight from i-node)
 - □ For a *two-megabyte* file? 244
 - File has 256 data blocks
 - The first 12 are accessed straight from the i-node