
Chapter I
Introduction

Jehan-François Pâris
jfparis@uh.edu



Chapter Overview

 Defining operating systems

 Major functions of an OS

 Types of operating systems

 UNIX

 Kernel organization



What is an operating system?

 “What stands between the user and the bare machine”



What is an operating system?

 The basic software required to operate a computer.
 Similar role to that of the conductor of an orchestra



Do not belong to OS

 All user programs
 Compilers, spreadsheets, word processors, and so forth
 Most utility programs
 mkdir is a user program calling mkdir()

 The command language interpreter
 Anyone can write his/her UNIX shell



The UNIX shells

 UNIX has several shells
sh (the Bourne shell) is the original UNIX shell
csh was developed at Berkeley by Bill Joy 
ksh (the Korn shell) was developed by David Korn at AT&T Bell 

Laboratories
bash (the GNU Bourne-Again shell ) 

and the list is far from complete



The core of the OS

 Part that remains in main memory 

 Controls the execution of all other programs.

 Known as the kernel
 Also called monitor, supervisor, executive

 Other programs interact with it through system calls



Kernel

System calls

Program System call /
system request



A question

 Who among you has already used system calls?



The answer

 All of you

All I/O operations are performed through system calls



The four missions



Functions of an OS

 Four basic functions

 To provide a better user interface

 To manage the system resources

 To protect users’ programs and data

 To let programs exchange information



A better user interface

 Accessing directly the hardware would be very cumbersome
 Must enter manually the code required to read into main memory 

each program 
boot strapping



How it was done (I)

PDP 8
 Early 70’s
 12-bit machine
 4K RAM!



How it was done (II)

Toggle switches in front panel were used to 
enter the bootstrap code



Batch systems

 Allow users to submit a batches of requests to be processed in 
sequence

 Include a command language specifying what to do with the 
inputs
Compile
Link edit
Execute and so forth



An IBM 1401



Interactive systems

 Came later

 Allow users to interact with the OS through their terminals:

 Include an interactive command language 
 UNIX shells, Windows PowerShell
Can also be used to write scripts



Time sharing

 Lets several interactive users to access a single computer at the 
same time

 Standard solution when computers were expensive



Graphical user interfaces

 Called GUIs (pronounced goo-eys): 
Macintosh, Windows, X-Windows, Linux
Require a dedicated computer for each user
Pioneered at Xerox Palo Alto Research Center (Xerox PARC)
Popularized by the Macintosh
Dominated the market with MS Windows



The Xerox Alto



Xerox PARC (I)

 Founded by XEROX in 1970
 Invented
 Laser printing
 Ethernet
 The GUI paradigm
 Object-oriented programming (Smalltalk)



Xerox PARC (II)

 All their inventions were brought to market by other concerns

 Popular belief is that Xerox management blew it

 In reality
Alto workstations were very expensive
Smalltalk was very slow
Group was too small to deliver a full system



Smart phones and tablets

 Convergence of four trends
Cheaper LCD displays
Solid-State Storage (SSD)
Faster wireless communications
Ubiquitous wireless



History repeats itself

 First successful devices introduced by Apple
 iPod, iPhone, iPad, …

First iPad was underpowered

 Competition soon grows
Cheaper Android devices



With a difference!

 Apple did not "steal" the concept from anyone
 iPods, iPhones, iPads were an instant success
Reasonably priced 



Two models

 Apple:
Closed ecosystem

(walled garden)
Strict controls on

app market
Missing features

No file system

 Android:
Just the opposite

Lax controls on 
app market

Can access the 
Linux/Android 
shell



Is this paradise?



Summary

 Six major steps
Bare bone machine
Batch systems
Timesharing
Personal computer
Personal computer with GUI
Smart phone/tablet



File systems

 Let users create and delete files without having to worry about 
disk allocation
Users lose the ability to specify how their files are stored on the 

disk
Database designers prefer to bypass the file system

 Some file systems tolerate disk failures (RAID) 



Managing system resources

 Focus of the remainder of the course
 Not an easy task
Enormous gap between CPU speeds and disk access times 



The memory hierarchy (I)

Level Device Access 
Time

1 Fastest registers (2 GHz) 0.5 ns 
2 Main memory 10-70 ns 
3 Secondary storage (flash) 35-100 μs 
4 Secondary storage (disk) 3-12 ms
5 Mass storage (off line) a few s 



The memory hierarchy (II)

 To make sense of these numbers, let us consider an analogy



Writing a paper (I)

Level Resource Access Time
1 Open book on desk 1 s 
2 Book on desk
3 Book in UH library
4 Book in another library
5 Book very far away



Writing a paper (II)

Level Resource Access Time
1 Open book on desk 1s 
2 Book on desk 20-140 s 
3 Book in UH library
4 Book in another library
5 Book very far away



Writing a paper (II)

Level Resource Access Time
1 Open book on desk 1s 
2 Book on desk 20-140s 
3 Book in UH library 20-55h
4 Book in another library
5 Book very far away



Writing a paper (III)

Level Resource Access Time
1 Open book on desk 1 s 
2 Book on desk 20-140 s 
3 Book in UH library 20-55 h
4 Book in another library 70-277 days
5 Book very far away



Writing a paper (V)

Level Resource Access Time
1 Open book on desk 1 s 
2 Book on desk 20s-140 s 
3 Book in UH library 20-55 h
4 Book in another library 70-277 days
5 Book very far away > 63 years



Will the problem go away?

 New storage technologies
Cheaper than main memory
Faster than disk drives

 Flash drives

 Optane memory



Flash drives

 Offspring of EEPROM memories
 Fast reads
Block-level

 Slower writes
Whole page of data must be erased then rewritten

 Can only go through a finite number of
program /erase cycles



Optane memory (I)

 Byte-addressable non-volatile memory (BNVM)

 Simpler design
Bits are stored as resistivity levels of a secret alloy
No transistors (≠ SRAM and DRAM)

 Faster than flash
 100-300 ns



Optane memory (II)

 Now
Non-volatile RAM
Disk cache

 In a few years
Could replace flash (phones, laptops, …)
Flash could replace disks (disk farms)
Disks could replace slower devices
Will require a redesign of file system



Optimizing disk accesses

 Two main techniques
Making disk accesses more efficient
Doing something else while waiting for an I/O operation

 Not very different from what we are doing in our every day's lives



Optimizing read accesses (I)

 When we shop in a market that’s far away from our home, we 
plan ahead and buy food for several days

 The OS will read as many bytes as it can during each disk 
access
 In practice, entire blocks (4KB or more)
 Blocks are stored in the I/O buffer



Optimizing read accesses (II)

Process

I/O buffer

Disk
Drive

Read operation

Physical I/O• Most small read operations 
can be completed without
any disk access



Optimizing read accesses (III)

 Buffered reads work quite well
 Most systems use it

 Major limitation
 Cannot read too much ahead of the program

 Could end bringing into main memory data that would 
never be used



Optimizing read accesses (IV)

 Can also keep in a buffer recently accessed blocks hoping they 
will be accessed again
Caching

 Works very well because we keep accessing again and again the 
data we are working with

 Caching is a fundamental technique of 
OS and database design



Optimizing write accesses (I)

 If we live far away from a library, we wait until we have several 
books to return before making the trip

 The OS will delay writes for a few seconds then
write an entire block
Since most writes are sequential, most small writes will not 

require any disk access



Optimizing write accesses (II)

 Delayed writes work quite well
Most systems use it

 Major drawback
 We will lose data if the system or the program crashes

 After the program issued a write but 
 Before the data were saved to disk 

 Unless we use NVRAM



Doing something else

 When we order something on the web, we do not remain idle until 
the goods are delivered

 The OS can implement multiprogramming and let the CPU run 
another program while a program waits for an I/O 



Advantages (I)

 Multiprogramming is very important in business applications
Many of these applications use the peripherals much more than 

the CPU
For a long time the CPU was the most expensive component of 

a computer
Multiprogramming was invented to keep the CPU busy



Advantages (II)

 Multiprogramming made time-sharing possible

 Multiprogramming lets your PC run several applications at the 
same time
MS Word and MS Outlook



Multiprogramming (I)

 Multiprogramming lets the CPU divide its time among different 
tasks:
 One tenth of a second on a program, then another tenth of a 

second on another one and so forth
 Each core of your CPU will still be working on one single task at 

any given time 



Multiprogramming (II)

 The CPU does not waste any time waiting for the completion of 
I/O operations 

 From time to time, the OS will need to regain control of the CPU
 Because a task has exhausted its fair share of the CPU time 
 Because something else needs to be done.

 This is done through interrupts.



Interrupts (I)

 Request to interrupt the flow of execution the CPU

 Detected by the CPU hardware
 After it has executed the current instruction
 Before it starts the next instruction.



A very schematic view (I)

 A very basic CPU would execute the following loop:
forever {

fetch_instruction();
decode_instruction();
execute_instruction();

}

 Pipelining makes things more complicated
 And CPU much faster!



A very schematic view (II)

 We add an extra step:

forever {
check_for_interrupts();
fetch_instruction();
decode_instruction();
execute_instruction();

}



Interrupts (II)

 When an interrupt occurs:

a. The current state of the CPU (program counter, program 
status word, contents of registers, and so forth) is saved, 
normally on the top of a stack

b. A new CPU state is fetched



Interrupts (III)

 New state includes a new hardware-defined value for the 
program counter
 Cannot “hijack” interrupts 

 Process is totally transparent to the task being interrupted 
 A process never knows whether it has been interrupted or not



Types of interrupts (I)

 I/O completion interrupts
 Notify the OS that an I/O operation has completed,

 Timer interrupts
 Notify the OS that a task has exceeded its quantum of core 

time



Types of interrupts (II)

 Traps
 Notify the OS of a program error (division by zero, illegal op 

code, illegal operand address, ...) or a hardware failure

 System calls
 Notify OS that the running task wants to submit a request to 

the OS



A surprising discovery

 Programs do interrupt themselves!



Context switches

 Each interrupt will result into two context switches:
 One when the running task is interrupted 
 Another when it regains the CPU 

 Context switches are not cheap
 The overhead of any simple system call is

two context switches

Remember that!



Prioritizing interrupts (I)

 Interrupt requests may occur while the system is processing 
another interrupt 

 All interrupts are not equally urgent (as it is also in real life
 Some are more urgent than other
 Also true in real life



Prioritizing interrupts (II)

 The best solution is to prioritize interrupts and assign to each 
source of interrupts a priority level
 New interrupt requests will be allowed to interrupt lower-priority 

interrupts but will have to wait for the completion of all other 
interrupts 

 Solution is known as vectorized interrupts. 



Example from real life

 Let us try to prioritize
Phone is ringing 
Washer signals end of cycle
Dark smoke is coming out of the kitchen
 …

 With vectorized interrupts, a phone call will never interrupt another 
phone call



The solution

Smoke in the kitchen
Phone is ringing

End of washer cycle
More low-priority stuff



Disabling Interrupts

 We can disable interrupts

 OS does it before performing short critical tasks that cannot be 
interrupted
Works only for single-threaded kernels

 User tasks must be prevented from doing it
Too dangerous 



DMA

 Disk I/O poses a special problem
CPU will have to transfer large quantities of data between the 

disk controller's buffer and the main memory

 Direct memory access (DMA) allows the disk controller to read 
data from and write data to main memory without any CPU 
intervention
Controller “steals” memory cycles from CPU



Protecting users’ data (I)

 Unless we have an isolated single-user system, we must prevent 
users from
 Accessing
 Deleting
 Modifying

without authorization other people's programs and data



Protecting users’ data (II)

 Two aspects
 Protecting user's files on disk
 Preventing programs from interfering with each other 

 Two solutions
 Dual-mode CPUs
 Memory protection



Historical Considerations

 Earlier operating systems for personal computers did not have 
any protection
They were single-user machines
They typically ran one program at a time 

 Windows 2000, Windows XP, Vista and MacOS X are protected 



Protecting users’ files

 Key idea is to prevent users’ programs from directly accessing the 
disk

 Will require I/O operations to be performed by the kernel

 Make them privileged instructions 
 Only the kernel can execute



Privileged instructions 

 Require a dual-mode CPU

 Two CPU modes
Privileged mode or executive mode

 Allows CPU to execute all instructions
User mode

 Allows CPU to execute only safe unprivileged instructions
 State of CPU is determined by a special bit



Kernel

User Process

X

All disk/SSD accesses must go through the kernel



Switching between states

 User mode will be the default mode for all programs
Only the kernel can run in supervisor mode

 Switching from user mode to supervisor mode is done through an 
interrupt 
Safe because the jump address is at a well-defined location in 

main memory



Performing an I/O
I/O request
(interrupt)

Physical I/O 
(executed by the kernel)

User Process

Kernel



An analogy (I)

 Most UH libraries are open stacks
 Anyone can consult books in the stacks and bring them to 

checkout

 National libraries and the Library of Congress have
closed stack collections
 Users fill a request for a specific document
 A librarian will bring the document to the circulation desk



An analogy (II)

 Open stack collections 
 Let users browse the collections
 Users can misplace or vandalize books

 Closed stack collections
 Much slower access
 Much safer



More trouble

 Having a dual-mode CPU is not enough to protect user’s files

 Must also prevent rogue users from tampering with the kernel
 Same as a rogue customer bribing a librarian in order to steal 

books

 Done through memory protection



Memory protection (I)

 Prevents programs from accessing any memory location outside 
their own address space 

 Requires special memory protection hardware
 Memory Management Unit (MMU)

 Memory protection hardware 
 Checks every reference issued by program
 Generates an interrupt when it detects a protection violation



Memory protection (II)

 Has additional advantages:
Prevents programs from corrupting address spaces of other 

programs
Prevents programs from crashing the kernel

Not true for device drivers which are inside the kernel
 Required part of any multiprogramming system



Memory protection (III)

Main memory

CPU
MAR

memory address

MMU

MMU
checks all
memory 
references



Even more trouble 

 Having both a dual-mode CPU and memory protection is not 
enough to protect user’s files

 Must also prevent rogue users from booting the system with a
doctored kernel
 Example:

 Can run Linux from a “live” CD Linux 
 Linux will read all NTFS files ignoring all restrictions set up 

by Windows



Inter-process communication

 Has become very important over the last thirty years
 Two techniques
 Message passing

 General but not very easy to use
 Shared memory

 Less general, easier to use but requires
inter-process synchronization



ANOTHER VIEW

 Arpaci-Dusseau & Arpaci-Dusseau
 Focus on services provided by OSes

 Three themes
 Virtualization
 Concurrency
 Persistence



Virtualization

 The process abstraction

 Virtualizing the CPU:
Process scheduling

 Virtualizing the memory:
Memory management



Concurrency

 Threads
 Locks
 Semaphores

We will cover threads in the chapter on
processes because they are essential
to the client server model



Persistence

 The file system



Types of operating systems



Types of operating systems

 Already discussed:
Batch systems
Time-Sharing systems

 Will now introduce 
Real-Time systems
Operating systems for multiprocessors
Distributed systems



Real-time systems

 Designed for applications with strict real-time constraints :
 Process control
 Guidance systems
 Most multimedia applications 

 Must guarantee that critical tasks will always be performed within 
a specific time frame.



Hard RT systems

 Must guarantee that all deadlines will always be met 

 Any failure could have catastrophic consequences:
 The reactor could overheat and explode
 The rocket could be lost 



Soft RT systems

 Guarantee that most deadlines will be met
 A DVD decoder that miss a deadline will spoil our viewing 

pleasure for a fraction of a second



Observations

 Hard RT applications normally run on special RT OSes

 Soft RT applications can run on a regular OS
 If the OS supports them

 Interactive and time-sharing systems are not RT systems
They attempt to provide a fast response time but do not try to 

meet specific deadlines



Multiprocessor operating systems 

 Designed for multiprocessor architectures
Several processors share the same memory 

CPU CPU CPU CPU

MEMORY

CACHE CACHE CACHE CACHE



Leader/follower multiprocessing

 Single copy of OS runs on a dedicated core/processor
 Leader or master (deprecated)

 Other cores/processors can only run applications
Followers or slaves (deprecated)

 Major advantage is simplicity
Requires few changes

 Major disadvantage is lack of scalability
Single copy of OS can become a bottleneck



Symmetric multiprocessing

 Any core/processor can perform all functions
There can be multiple copies of the OS running in parallel 

 Must prevent them from interfering with each other 
Disabling interrupts will not work
Must add locks to all critical sections



The state of the art

 Most computers now have multicore CPUs
Sole practical way to increase CPU power

 Many have powerful GPUs
Highly parallel

 Using multicore architectures in an effective way is a huge 
challenge



Distributed systems 

 Integrated networks of computers
Workstations sharing common resources (file servers, 

printers, …)

 Current trend is to leave systems very loosely coupled
Each computer has its own OS



Client /Server Model

 Servers wait for requests from
clients and process them
 File servers
 Print servers
 Authentication servers

CLIENT

SERVER

request

reply



A typical sequential server

for (;;){
//wait for request
get_request(…);
// process it
process_request(…);
// send reply
send_reply(…);

} // forever



Network file system

 Lets several workstations share files stored 
on a common file server

SERVER



Performance Issues

 Response time is the main issue
Network latency is now added to disk latency

 Will attempt to mask these two latencies 
Extensive client caching
Works very well



File consistency issues (I)

 What happens if a file F is simultaneously 
modified on two distinct workstations 

SERVER

F



File consistency issues (II)

 Client caches will hold different versions 
F’ and F’’ of file F

SERVER

F

F’ F’’



File Consistency Issues (III)

 Maintaining file consistency is a very important issue in 
distributed/networked file system design

 Different systems use different approaches
 NFS from Sun Microsystems
 AFS/Coda from CMU
 …



Other distributed systems issues

 Authenticating users
 A problem in open networks

 Making distributed systems as reliable as stand-alone systems
 Replication of data and services

 Keeping the clocks of the machines more or less synchronized.



Unix and Linux



UNIX (I)

 Started at Bell Labs in the early 70's as an attempt to build a 
sophisticated time-sharing system on a very small minicomputer.

 First OS to be almost entirely written in C 

 Ported to the VAX architecture in the late 70’s at U. C. Berkeley: 
 Added virtual memory and networking



The fathers of UNIX

Ken Thompson and Denis Ritchie



UNIX (II)

 Became the standard operating systems for workstations
 Selected by Sun Microsystems

 Became less popular because
 Too many variants

 Berkeley BSD, ATT System V, …
 PCs displaced workstations
 Windows has a better user interface



UNIX Today

 Several free versions exist (FreeBSD, Linux):
 Free access to source code

 Ideal platform for OS research

 Apple OS X runs on the top of an updated version of BSD

 Android runs on top of a heavily customized Linux kernel

 Chrome runs on top of a vanilla Linux OS



A Rapid Tour

 UNIX kernel is the core of the system and handles the system 
calls

 UNIX has several shells: sh, csh, ksh, bash
 On-line command manual: 
man xyz

displays manual page for command xyz
man 2 xyz

displays manual page for system call xyz(…)



Most Lasting Impact

 First OS that 
 Run efficiently on very different platforms
 Had its source code made available to its users

 File system inspired most more recent OSes

 Remains the best platform for OS research



Kernel organizations



Kernel Organizations

 Three basic organizations:
Monolithic kernels:

The default
Layered kernels:

A great idea that did not work
Microkernels:

Hurt by the high cost of context switches



Monolithic kernels

 No particular organization
 All kernel functions share the same address space
 This includes devices drivers and other kernel extensions

 Lack of internal organization makes the kernel
hard to manage, extend and debug



MS-DOS (I)

Resident System Program

MS-DOS Device Drivers
BIOS Device Drivers



The BIOS

 Basic Input-Output System
 Stored on a chip
 First ROM, now EEPROM

 Takes control of CPU when system is turned on
 Identifies system components
 Initiates booting of operating system 

 Also provides low-level I/O access routines



The “curse”

 Hardware lacked dual mode and hardware memory protection

Nothing prevented application programs from accessing directly 
the BIOS

Program accessing disk files through BIOS I/O routines 
assumed a given disk organization
Changing it became impossible 



The solution

 For a long time, Microsoft could not make radical changes to its 
FAT-16 disk organization

 Windows XP and all modern operating systems prevent user 
programs from bypassing the kernel.



UNIX

 Monolithic kernel contains everything that is not device-specific
including file system, networking code, and so forth. 

Monolithic kernel 

Terminal, device and memory controllers



Layered kernel

 Proposed by Edsger Dijkstra

 Implemented as a hierarchy of layers:

 Each layer defines a new data object
Hiding from the higher layers some functions of the lower layers
 Providing some new functionality



THE operating system kernel

 (named after Dutch initials of T. U. Eindhoven)

User programs

Buffering for I/O devices

Operator console device driver

Memory management

CPU scheduling

Hardware



Limitations

 Layered design works extremely well for networking code
 Each layer offers its own functionality

 Much less successful for kernel design
 No clear ordering of layers

 Memory management uses file system features and
vice versa

BAD
IDEA



Microkernels

 A reaction against “bloated” monolithic kernels
 Hard to manage, extend, debug and secure

 Key idea is making kernel smaller by delegating non-essential 
tasks to trusted user-level servers
 Same idea as subcontracting

 Microkernel keeps doing what cannot be delegated:
Security, short-term scheduling, …



How it works (I)

Trusted serverUser program

Small
microkernel



How it works (II)

 Microkernel
 Receives request from user program
 Decides to forward it to a user-level server
 Waits for reply for server
 Forwards it to user program

 Trusted servers run outside the kernel
 Cannot execute privileged instructions



Advantages

 Kernel is smaller, easier to secure and manage

 Servers run outside of the kernel
 Cannot crash the kernel
 Much easier to extend kernel functionality 

 Adding new servers
 Adding an NTFS server to UNIX microkernel



Major disadvantage

 Too slow
Four context switches instead of two

• Speed remains an essential concern

• We don’t like to trade speed for safety 
(or anything else)



A conventional kernel

User program

Conventional kernel

Each system call occasions
two context switches
Each system call occasions
two context switches



A microkernel

User program

Smaller microkernel

Trusted server

Four context switches



Mach

 Designed in mid 80’s to replace UNIX kernel

 New kernel with different system calls
UNIX system calls are routed to an

emulation server

 Emulation server was d to run in user space
Slowed down the system
Server ended inside the kernel



MINIX 3

 MINIX 1 was designed for teaching OS internals
Predates Linux

 Now aimed at high reliability (embedded) applications
 More willing to trade space for reliability

 Runs on x86 and ARM processors

 Compatible with NetBSD 



MINIX 3 microkernel

 "Tiny" (12,700 lines) microkernel 
Handles interrupts and message passing 
Only code running in kernel mode 

 Other OS functions are handled by
isolated, protected, user-mode processes 
Each device driver is a separate user-mode process 
System automatically restarts crashed drivers



Modular kernels

 Linux, Windows 

 Modules are object files whose contents can be linked to—and 
unlinked from—the kernel at any time
Run inside the kernel address space
Used to add to the kernel device drivers for new devices



Advantages

 Extensibility:
 Can add new features the kernel 
 In many cases, the process is completely transparent to the 

user 
 Lack of performance penalty:
 Modules run in the kernel address space



Disadvantages

 Lower reliability
 A bad module can corrupt the whole kernel and crash the 

system.

 Serious problem
 Many device drivers are poorly written
 Device drivers account for 85% of reported failures of 

Windows XP



Current state of the art

UNIX

Mach Windows

safe fast

extensible



Why?

 Unix has a monolithic kernel (which makes it fast) and does not 
allow extensions (which makes it both safe and non-extensible)

 Windows has a monolithic kernel (which makes it fast) and allows 
extensions (which makes it both extensible and unsafe)

 Mach allows extensions in user space (which makes it extensible, 
safe and slow)



Virtual machines



Virtual machines

 Let different operating systems run at the same time on a single 
computer
Windows, Linux and Mac OS
A real-time OS and a conventional OS
A production OS and a new OS being tested



How it is done

 A hypervisor /VM monitor defines two or more virtual machines
Each virtual machine has

 Its own virtual CPU
 Its own virtual physical memory
 Its own virtual disk(s)

 Can also install VM on top of a host OS
VM Box



The virtualization process
Actual 

hardware

CPU

Memory

Disk

Virtual 
hardware # 1

CPU

Memory

Virtual 
hardware # 2

CPU

Memory

Disk

Virtual 
hardware # 1

CPU

Memory

Disk

Hypervisor



Reminder 

 In a conventional OS,
Kernel executes in privileged/supervisor mode

Can do virtually everything
User processes execute in user mode

Cannot modify their page tables
Cannot execute privileged instructions



Kernel
Privileged

mode

User
mode

User processUser process

System call

A conventional architecture



Two virtual machines

Hypervisor
Privileged

mode

User
Mode

User
Mode

User
process

VM Kernel

User
process

User
process

VM Kernel

User
process



Explanations (II)

 Whenever the kernel of a VM issues a privileged instruction, an 
interrupt occurs
The hypervisor takes control and do the physical equivalent of 

what the VM attempted to do:
Must convert virtual RAM addresses into physical RAM 

addresses
Must convert virtual disk block addresses into physical block 

addresses 



Translating a block address

VM kernel

Virtual disk

Access block x, y
of my virtual disk

That's block v, w 
of the actual disk

Actual disk

Hypervisor

Access block v, w
of actual disk



Handling I/Os

 Difficult task because
Wide variety of devices
Some devices may be shared among several VMs

Printers
Shared disk partition

Want to let Linux and Windows
access the same files



Virtual Memory Issues

 Each VM kernel manages its own memory
 Its page tables map program virtual addresses into what it 

believes to be physical addresses



The dilemma

User process
A

VM kernel

Page 735 of process A is 
stored in page frame 435

That's page frame 993 of 
the actual RAM

Hypervisor



Nastiest Issue

 The whole VM approach assumes that a kernel executing in user 
mode will behave exactly like a kernel executing in privileged 
mode except that privileged instructions will be trapped 

 Not true for all architectures!
 Intel x86 Pop flags (POPF) instruction
…



The Virtual Box Solution

 Code Scanning and Analysis Manager (CSAM) 

Scans privileged code recursively before its first execution to 
identify problematic instructions

Calls the Patch Manager (PATM) to perform in-situ patching. 



The Xen solution

 Modify the guest kernel to eliminate badly behaving instructions 
such as POPF
Paravirtualization
Faster but less flexible

Requires open-source kernel

User programs are not affected
 Only the kernel



Containers

 Each VM runs its own copy of the kernel
Takes memory space

 Containers provide isolated user-space instances that share the 
same kernel
Less overhead
Less flexibility

 Docker, LYXC


