Chapter |

Introduction

Jehan-Francois Paris
jfparis@uh.edu

= S
Chapter Overview

m Defining operating systems
m Major functions of an OS

m Types of operating systems
= Unix

m Kernel organization

= SEE——
What is an operating system?

m “What stands between the user and the bare machine”

= S
A better definition

m The basic software required to operate a computer.
m Has a similar role to that of the conductor of an orchestra

= Emmm—
Do not belong to OS

m All user programs
m Compilers, spreadsheets, word processors, and so forth
m Most utility programs
0 mkdir is a user program calling mkdir()
m The command language interpreter
1 Anyone can write his/her Unix shell

=
The Unix shells

m Unix has several shells
1sh (the Bourne shell) is the original Unix shell
1csh was developed at Berkeley by Bill Joy

1ksh (the Korn shell) was developed by David Korn at AT&T Bell
Laboratories

1bash (the GNU Bourne-Again shell)
and the list is far from complete

= Emmm—
The core of the OS

m Part that remains in main memory
m Controls the execution of all other programs.

m Known as the kernel
1 Also called monitor, supervisor, executive

m Other programs interact with it through system calls

= CEESSS

System calls

System call /
system request

= S
A question

® WWho among you has already used system calls?

= S
The answer

= All of you

DAl l/O operations are performed through system calls

The four missions

= Emmmm—
Missions of an OS

m Four basic functions
1 To provide a better user interface
1 To manage the system resources
1 To protect users’ programs and data

1 To let programs exchange information

= Emmm——
A better user interface

m Accessing directly the hardware would be very cumbersome

= Must enter manually the code required to read into main memory
each program

[1boot strapping

= S

How it was done (I)

PDP 8

m Early 70’s

= 12-bit machine
0 4K RAM!

= SEE——

How it was done (ll)

P S R I e =

Toggle switches in front panel were used to
enter the bootstrap code

= Emmmm—
Batch systems

m Allow users to submit a batches of requests to be processed in
sequence

® Include a command language specifying what to do with the
iInputs

1 Compile
JLink edit
1Execute and so forth

An IBM 1401

= Emmm——
Interactive systems

m Came later

= Allow users to interact with the OS through their terminals:
® Include an interactive command language

0 Unix shells, Windows PowerShell
1Can also be used to write scripts

- Emmmm——
Time sharing

m Lets several interactive users to access a single computer at the
same time

m Standard solution when computers were expensive

=
Graphical user interfaces

m Called GUIs (pronounced goo-eys):
Macintosh, Windows, X-Windows, Linux

1Require a dedicated computer for each user

1Pioneered at Xerox Palo Alto Research Center (Xerox PARC)
1Popularized by the Macintosh

[1Dominated the market with MS Windows

= SEE—
The Xerox Alto

- Emmmm——
Xerox PARC (I)

® Founded by XEROX in 1970

= Invented
1 Laser printing
1 Ethernet
1 The GUI paradigm
1 Object-oriented programming (Smalltalk)

= Emmm—
Xerox PARC (Il)

m All their inventions were brought to market by other concerns
m Popular belief is that Xerox management blew it

m |n reality

1Alto workstations were very expensive
0Smalltalk was very slow

01 Group was too small to deliver a full system

- Emmm——
Smart phones

m Convergence of trends
[1Better cellular connectivity
1Cheaper LCD displays

1Solid-State Storage (SSD)
JInexpensive wireless networks (WiFi)

= Emmmm——
History repeats itself

m First successful devices introduced by Apple
1Pod, iIPhone, IPad, ...
= First iPad was underpowered

= Competition soon grows
[1Cheaper Android devices

- Emmmm——
With a difference!

= Apple did not "steal" the concept from anyone
m |[Pods, iIPhones, iIPads were an instant success
[1Reasonably priced

g

Two models
m Apple: m Android:
1Closed ecosystem 1Just the opposite
(walled garden)
1Strict controls on app [1Lax controls on app market
market
C1Missing features 1Can access Linux/Android

= No file system shell

?

Is a walled garden the paradise

- Emmmm——
Summary

m Six major steps
[1Bare bone machine
[1Batch systems
1 Timesharing
1Personal computer
1Personal computer with GUI
JSmart phone/tablet

= Emmm—
File systems

m Let users create and delete files without having to worry about
disk allocation

1Users lose the ability to specify how their files are stored on the
disk
1Database designers prefer to bypass the file system

m Some file systems tolerate disk failures (RAID)

= Emmm——
Managing system resources

m Focus of the remainder of the course
m Not an easy task
JEnormous gap between CPU speeds and disk access times

=
The memory hierarchy ()

Level Device Access
Time
1 Fastest registers (2 GHz) 0.5ns
2 | Main memory 10-70 ns
3 | Secondary storage (flash) 35-100 us
4 | Secondary storage (disk) 3-12 ms
5 |Mass storage (off line) afews

= S
The memory hierarchy (ll)

= To make sense of these numbers, let us consider an analogy

=
Writing a paper (I)

Level Resource Access Time
1 Open book on desk 1s
2 | Book on desk
3 |Bookin UH library
4 |Book in another library
5 | Book very far away

=
Writing a paper (ll)

Level Resource Access Time
1 Open book on desk 1s
2 | Book on desk 20-140 s
3 |Bookin UH library
4 |Book in another library
5 | Book very far away

=
Writing a paper (lll)

Level Resource Access Time
1 Open book on desk 1s
2 | Book on desk 20-140s
3 |Bookin UH library 20-55h
4 |Book in another library
5 | Book very far away

=
Writing a paper (V)

Level Resource Access Time
1 Open book on desk 1s
2 | Book on desk 20-140 s
3 |Bookin UH library 20-35 h
4 |Book in another library 70-277 days
5 | Book very far away

=
Writing a paper (V)

Level Resource Access Time
1 Open book on desk 1s
2 |Book on desk 20s-140 s
3 |Bookin UH library 20-35 h
4 |Book in another library 70-277 days
5 | Book very far away > 63 years

-
Will the problem go away?

= New storage technologies
[1Cheaper than main memory
1Faster than disk drives

m Flash drives

= Optane memory

= Emmmm—
Flash drives

m Offspring of EEPROM memories
m Fast reads
1Block-level
= Slower writes
OWhole page of data must be erased then rewritten

m Can only go through a finite number of
program /erase cycles

=
Optane memory

= Byte-addressable non-volatile memory (BNVM)

m Simpler design
1Bits are stored as resistivity levels of a secret alloy
1No transistors (# SRAM and DRAM)

= Faster than flash
1 100-300 ns
m Dropped by Intel last year

=
Optimizing disk accesses

= Two main techniques
1Making disk accesses more efficient
1Doing something else while waiting for an 1/O operation

= Not very different from what we are doing in our every day's lives

=
Optimizing read accesses ()

m When we shop in a market that’s far away from our home, we
plan ahead and buy food for several days

= The OS will read as many bytes as it can during each disk
access

0 In practice, entire blocks (4KB or more)
1 Blocks are stored in the 1/O buffer

=
Optimizing read accesses (ll)

Process

t Read operation

/O buffer
Physical I/O
* Most small read requests
can be completed without Disk

any disk access

= Emmm—
Optimizing read accesses (lll)

= Buffered reads work quite well
1 Most systems use it

m Major limitation
1 Cannot read too much ahead of the program

= Could end bringing into main memory data that would
never be used

= mmmm—
Optimizing read accesses (lV)

m Can also keep in a buffer recently accessed blocks hoping they
will be accessed again

1Caching

m Works very well because we keep accessing again and again the
data we are working with

m Caching is a fundamental technique of
OS and database design

= Emmm—
Optimizing write accesses (l)

m /f we live far away from a library, we wait until we have several
books to return before making the trip

= The OS will delay writes for a few seconds then
write an entire block

[1Since most writes are sequential, most small writes will not
require any disk access

=
Optimizing write accesses (ll)

m Delayed writes work quite well
[1Most systems use it

m Major drawback
1 We will lose data if the system or the program crashes
= After the program issued a write but
= Before the data were saved to disk
1 Unless we use NVRAM

= Emmm—
Doing something else

m When we order something on the web, we do not remain idle until
the goods are delivered

m The OS can implement multiprogramming and let the CPU run
another program while a program waits for an 1/O

=
Advantages (l)

= Multiprogramming is very important in business applications

1Many of these applications use the peripherals much more than
the CPU

OFor a long time the CPU was the most expensive component of
a computer

O Multiprogramming was invented to keep the CPU busy

= Emmmm—
Advantages (ll)

m Multiprogramming made time-sharing possible

m Multiprogramming lets your PC run several applications at the
same time

1MS Word and MS Outlook

=
Multiprogramming (1)

= Multiprogramming lets the CPU divide its time among different
tasks:

= One tenth of a second on a program, then another tenth of a
second on another one and so forth

m Each core of your CPU will still be working on one single task at
any given time

= Emmm—
Multiprogramming (lIl)

m The CPU does not waste any time waiting for the completion of
/O operations

= From time to time, the OS will need to regain control of the CPU
1 Because a task has exhausted its fair share of the CPU time
1 Because something else needs to be done.

m This is done through interrupts.

= Emmmm——
Interrupts (I)

m Request to interrupt the flow of execution the CPU

m Detected by the CPU hardware
1 After it has executed the current instruction
1 Before it starts the next instruction.

= Emmm—
A very schematic view ()

= Avery basic CPU would execute the following loop:

forever {
fetch_instruction();
decode_instruction();
execute_instruction();

}

m Pipelining makes things more complicated
1 And CPU much faster!

- Emmm——
A very schematic view (l)

= We add an extra step:

forever {
check_for_interrupts();
fetch_instruction();
decode_instruction();
execute_instruction();

= Emmm—
Interrupts (I1)

= \When an interrupt occurs:

a. The current state of the CPU (program counter, program

status word, contents of registers, and so forth) is saved,
normally on the top of a stack

b. A new CPU state is fetched

= Emmm—
Interrupts (l1l)

m New state includes a new hardware-defined value for the
program counter

1 Cannot “hijack” interrupts

m Process is totally transparent to the task being interrupted
1 A process never knows whether it has been interrupted or not

=
Types of interrupts (1)

= I/O completion interrupts
1 Notify the OS that an |/O operation has completed,

m Timer interrupts

1 Notify the OS that a task has exceeded its quantum of core
time

= Emmm—
Types of interrupts (Il)

m Traps

1 Notify the OS of a program error (division by zero, illegal op
code, illegal operand address, ...) or a hardware failure

m System calls

1 Notify OS that the running task wants to submit a request to
the OS

= S
A surprising discovery

m Programs do interrupt themselves!

= mmmm—
Context switches

m Each interrupt will result into two context switches:
1 One when the running task is interrupted
1 Another when it regains the CPU

m Context switches are not cheap

= The overhead of any simple system call is
two context switches

Remember that!

=
Prioritizing interrupts (I)

m Interrupt requests may occur while the system is processing
another interrupt

= All interrupts are not equally urgent (as it is also in real life
1 Some are more urgent than other
1 Also true in real life

= mmmm—
Prioritizing interrupts (l1)

m The best solution is to prioritize interrupts and assign to each
source of interrupts a priority level

1 New interrupt requests will be allowed to interrupt lower-priority
interrupts but will have to wait for the completion of all other
Interrupts

m Solution is known as vectorized interrupts.

=
Example from real life

m Let us try to prioritize
[1Phone is ringing
[1Washer signals end of cycle
1Dark smoke is coming out of the kitchen
O ...

m With vectorized interrupts, a phone call will never interrupt another
phone call

= mmmm—
The solution

Smoke in the kitchen

Phone is ringing

End of washer cycle
More low-priority stuff

= Emmm—
Disabling Interrupts

m We can disable interrupts

m OS does it before performing short critical tasks that cannot be
interrupted

1Works only for single-threaded kernels

m User tasks must be prevented from doing it
1 Too dangerous

= Emmm—
DMA

m Disk I/O poses a special problem

1CPU will have to transfer large quantities of data between the
disk controller's buffer and the main memory

m Direct memory access (DMA) allows the disk controller to read
data from and write data to main memory without any CPU
intervention

[1Controller “steals” memory cycles from CPU

= Emmm——
Protecting users’ data (I)

m Unless we have an isolated single-user system, we must prevent
users from

1 Accessing
1 Deleting
0 Modifying
without authorization other people's programs and data

= Emmmm—
Protecting users’ data (ll)

m [wo aspects
1 Protecting user's files on disk
1 Preventing programs from interfering with each other

= [wo solutions
0 Dual-mode CPUs
1 Memory protection

= Emmm—
Historical Considerations

m Earlier operating systems for personal computers did not have
any protection

1 They were single-user machines
1 They typically ran one program at a time

= Windows 2000, Windows XP, Vista and MacOS X are protected

= Emmm—
Protecting users’ files

m Key idea is to prevent users’ programs from directly accessing the
disk
= Will require I/O operations to be performed by the kernel

m Make them privileged instructions
1 Only the kernel can execute

=
Privileged instructions

= Require a dual-mode CPU

® Two CPU modes
1 Privileged mode or executive mode
= Allows CPU to execute all instructions

1User mode
= Allows CPU to execute only safe unprivileged instructions

m State of CPU is determined by a special bit

= SRS

All disk/SSD accesses must go through the kernel

=
Switching between states

m User mode will be the default mode for all programs
10nly the kernel can run in supervisor mode

= Switching from user mode to supervisor mode is done through an
Interrupt

[1Safe because the jump address is at a well-defined location in
main memory

= B
Performing an I/O

/0 request
(interrupt)

Physical I/O \
(executed by the kernel) .

= Emmm—
An analogy ()

m Most UH libraries are open stacks

1 Anyone can consult books in the stacks and bring them to
checkout

= National libraries and the Library of Congress have
closed stack collections

1 Users fill a request for a specific document
1 Alibrarian will bring the document to the circulation desk

= Emmmm—
An analogy (ll)

= Open stack collections
1 Let users browse the collections
1 Users can misplace or vandalize books

m Closed stack collections
1 Much slower access
1 Much safer

= Emmm—
More trouble

® Having a dual-mode CPU is not enough to protect user’s files

= Must also prevent rogue users from tampering with the kernel

[0 Same as a rogue customer bribing a librarian in order to steal
books

m Done through memory protection

=
Memory protection (1)

m Prevents programs from accessing any memory location outside
their own address space

m Requires special memory protection hardware
1 Memory Management Unit (MMU)

® Memory protection hardware
1 Checks every reference issued by program
1 Generates an interrupt when it detects a protection violation

=
Memory protection (l1)

= Has additional advantages:

1Prevents programs from corrupting address spaces of other
programs

1 Prevents programs from crashing the kernel
= Not true for device drivers which are inside the kernel
= Required part of any multiprogramming system

= EEESSSS
Memory protection (llI)
CPU

memory address

= Emmm—
Even more trouble

= Having both a dual-mode CPU and memory protection is not
enough to protect user’s files

= Must also prevent rogue users from booting the system with a
doctored kernel

1 Example:
m Can run Linux from a “live” CD Linux

= Linux will read all NTFS files ignoring all restrictions set up
by Windows

= Emmm—
Inter-process communication

m Has become very important over the last thirty years
= [wo techniques
1 Message passing
= General but not very easy to use
1 Shared memory

= Less general, easier to use but requires
Inter-process synchronization

-
ANOTHER VIEW

m Arpaci-Dusseau & Arpaci-Dusseau
1 Focus on services provided by OSes

m Three themes
1 Virtualization
1 Concurrency
1 Persistence

= S
Virtualization

m [he process abstraction

= Virtualizing the CPU:
[1Process scheduling

= Virtualizing the memory:
[1Memory management

= Emmm——
Concurrency

m [hreads
m Locks
® Semaphores

We will cover threads In
the chapter on processes
because they are essential
to the client-server model

= SEE—
Persistence

m The file system

Types of operating systems

-
Overview

m Already discussed:
[1Batch systems
1 Time-sharing systems
= Will now introduce
[1Real-Time systems
10Operating systems for multiprocessors
1 Distributed systems

=
Real-time systems

m Designed for applications with strict real-time constraints :
1 Process control
0 Guidance systems
1 Most multimedia applications

m Must guarantee that critical tasks will always be performed within
a specific time frame.

=
Hard RT systems

m Must guarantee that all deadlines will always be met

m Any failure could have catastrophic consequences:
1 The reactor could overheat and explode
1 The rocket could be lost

- Emmm——
Soft RT systems

m Guarantee that most deadlines will be met

m A DVD decoder that miss a deadline will spoil our viewing
pleasure for a fraction of a second

=
Observations

m Hard RT applications normally run on special RT OSes

m Soft RT applications can run on a regular OS
O If the OS supports them

m Interactive and time-sharing systems are not RT systems

0 They attempt to provide a fast response time but do not try to
meet specific deadlines

=
Multiprocessor operating systems

| cPu | | cPu | [cpu || cPu |

N S

| cAcHE || cACHE |+>| CACHE |+ CACHE |

N N

MEMORY

m Designed for multiprocessor architectures
1Several processors share the same memory

=
Leader/follower multiprocessing

m Single copy of OS runs on a dedicated core/processor
1 Leader (previously called master)
m Other cores/processors can only run applications
1 Followers (previously called slaves)
m Major advantage is simplicity
[1Requires few changes
= Major disadvantage is lack of scalability
1Single copy of OS can become a bottleneck

= Emmm—
Symmetric multiprocessing

= Any core/processor can perform all functions
1 There can be multiple copies of the OS running in parallel

m Must prevent them from interfering with each other
C1Disabling interrupts will not work
[1Must add locks to all critical sections

= Emmm—
The state of the art

m Most computers now have multicore CPUs
1Sole practical way to increase CPU power
= Many have powerful GPUs
C1Highly parallel

m Using multicore architectures in an effective way is a huge
challenge

=
Distributed systems

m Integrated networks of computers

1 Workstations sharing common resources (file servers,
printers, ...)

m Current trend is to leave systems very loosely coupled
C0Each computer has its own OS

= Emmm——
Client /Server Model

m Servers wait for requests from
clients and process them

1 File servers
1 Print servers
1 Authentication servers

request

reply

= Emmm——
A typical sequential server

for (5;){
//wait for request
get_request(..);
// process it
process_request(..);
// send reply
send _reply(..);

} // forever

=
Network file system

m Lets several workstations share files stored
on a common file server

SERVER

= Emmm—
Performance Issues

m Response time is the main issue
1Network latency is now added to disk latency

= Will attempt to mask these two latencies
[1Extensive client caching
1 Works very well

= Emmm—
File consistency issues (l)

SERVER

= What happens if a file F is simultaneously
modified on two distinct workstations?

= Emmm—
File consistency issues (ll)

| o |

SERVER

' & F’ 5
P el ——

m Client caches will hold different versions
F’ and F” of file F

= Emmm—
File Consistency Issues (lll)

m Maintaining file consistency is a very important issue in
distributed/networked file system design

m Different systems use different approaches
0 NFS from Sun Microsystems

1 AFS/Coda from CMU
0 ...

=
Other distributed systems issues

= Authenticating users
1 A problem in open networks

m Making distributed systems as reliable as stand-alone systems
1 Replication of data and services

m Keeping the clocks of the machines more or less synchronized.

Unix and Linux

- aEmmmm—
Unix (I)

m Started at Bell Labs in the early 70's as an attempt to build a
sophisticated time-sharing system on a very small minicomputer.

m First OS to be almost entirely written in C

m Ported to the VAX architecture in the late 70’s at U. C. Berkeley:
1 Added virtual memory and networking

= S
The fathers of Unix

= aEmmmm—
Unix (I1)

m Became the standard operating systems for workstations
1 Selected by Sun Microsystems

m Became less popular because
1 Too many variants
= Berkeley BSD, ATT System V, ...
0 PCs displaced workstations
1 Windows Is easier to use
= Especially by newbies!

=
Unix Today

m Several free versions exist (FreeBSD, Linux):
1 Free access to source code
= |deal platform for OS research

m Apple OS X runs on the top of an updated version of BSD
= Android runs on top of a heavily customized Linux kernel

m Chrome runs on top of a vanilla Linux OS

= Emmm—
A Rapid Tour

m Unix kernel is the core of the system and handles the system calls
m Unix has several shells: sh, csh, ksh, bash
® On-line command manual:
Cman xyz
displays manual page for command xyz

Ciman 2 xyz
displays manual page for system call xyz(...)

=
Most Lasting Impact

m First OS that
1 Run efficiently on very different platforms
1 Had its source code made available to its users

m File system inspired most more recent OSes

® Remains the best platform for OS research

Kernel organizations

= Emmm——
Three basic organizations

= Monolithic kernels:
[1The default
m Layered kernels:
1A great idea that did not work
m Microkernels:
C1Hurt by the high cost of context switches

=
Monolithic kernels

= No particular organization
1 All kernel functions share the same address space
1 This includes device drivers and other kernel extensions

m Fastest

m Lack of internal organization makes the kernel
hard to manage, extend, and debug

MS-DOS

Resident System Program

| BIOS Device Drivers i

= Emmm—
The BIOS

m Basic Input-Output System

m Stored on a chip
1 First ROM, now EEPROM

m Takes control of CPU when system is turned on
1 ldentifies system components
1 Initiates booting of operating system

m Also provides low-level |I/O access routines

= Emmm—
The “curse”

m Hardware lacked dual mode and hardware memory protection

[1Nothing prevented application programs from accessing directly
the BIOS

1Program accessing disk files through BIOS 1/O routines
assumed a given disk organization

= Changing it became impossible

= Emmm——
Its impact

m For a long time, Microsoft could not make radical changes to its
FAT-16 disk organization

® Windows XP and all modern operating systems prevent user
programs from bypassing the kernel.

Unix

Monolithic kernel

Terminal, device and memory controllers

= Monolithic kernel contains everything that is not device-specific
including file system, networking code, and so forth.

=
Layered kernel

m Proposed by Edsger Dijkstra
= Implemented as a hierarchy of layers:

m Each layer defines a new data object
1Hiding from the higher layers some functions of the lower layers

1 Providing some new functionality

= EEES——
THE operating system kernel

® (named after Dutch initials of T. U. Eindhoven)

= Emmmm—
Limitations

m Layered design works extremely well for networking code
1 Each layer offers its own functionality
m Much less successful for kernel design
1 No clear ordering of layers
= Memory management uses file system features and

vice versa lE

= mmmm—
Microkernels

m Areaction against “bloated” monolithic kernels
1 Hard to manage, extend, debug and secure

m Key idea is making kernel smaller by delegating non-essential
tasks to trusted user-level servers

0 Same idea as subcontracting

= Microkernel keeps doing what cannot be delegated:
[1Security, short-term scheduling, ...

= aEmmmm——

How it works (I)

User program

Trusted server

Small

microkernel

= Emmm—
How it works (I)

= Microkernel
1 Receives request from user program
1 Decides to forward it to a user-level server
1 Waits for reply for server
1 Forwards it to user program

m Trusted servers run outside the kernel
1 Cannot execute privileged instructions

=
Advantages

m Kernel is smaller, easier to secure and manage

m Servers run outside of the kernel
1 Cannot crash the kernel
1 Much easier to extend kernel functionality
= Adding new servers
= Adding an NTFS server to Unix microkernel

= Emmm—
Major disadvantage

m Too slow
1Four context switches instead of two

» Speed remains an essential concern

« We don’t like to trade speed for safety (or
9 anything else)

= mmmm—
A conventional kernel

User program
Each system call occasions
two context switches

Conventional kernel

- Emmm——
A microkernel

User program Trusted server

Four context switches

Smaller microkernel

= Emmm—
Mach

m Designed in mid 80’s to replace Unix kernel

= New kernel with different system calls

C1Unix system calls are routed to an
emulation server

m Emulation server was designed to run in user space

[1Slowed down the system
1Server ended inside the kernel

=
MINIX 3

® MINIX 1 was designed for teaching OS internals
[1Predates Linux

= Now aimed at high reliability (embedded) applications
1 More willing to trade space for reliability

® Runs on x86 and ARM processors

m Compatible with NetBSD

= mmmm—
MINIX 3 microkernel

m "Tiny" (12,700 lines) microkernel
[1Handles interrupts and message passing
10nly code running in kernel mode

m Other OS functions are handled by
isolated, protected, user-mode processes

[1Each device driver is a separate user-mode process
[1System automatically restarts crashed drivers

= Emmm—
Modular kernels

m Linux, Windows

= Modules are object files whose contents can be linked to—and
unlinked from—the kernel at any time

[1Run inside the kernel address space
1Used to add to the kernel device drivers for new devices

= Emmm—
Advantages of modular kernels

m Extensibility:
1 Can add new features the kernel

1 In many cases, the process is completely transparent to the
user

m Lack of performance penalty:
1 Modules run in the kernel address space

= Emmm—
Their disadvantages

m Lower reliability

1 A bad module can corrupt the whole kernel and crash the
system.

m Serious problem
1 Many device drivers are poorly written

1 Device drivers account for 85% of reported failures of
Windows XP

- Emmmm——

Current state of the art

Unix
safe fast

Mach Windows
extensible

- -=EENNT
Why?
= Unix has a monolithic kernel (which makes it fast) and does not

allow extensions (which makes it both safe and non-extensible)

= Windows has a monolithic kernel (which makes it fast) and allows
extensions (which makes it both extensible and unsafe)

= Mach allows extensions in user space (which makes it extensible,
safe and slow)

Virtual machines

= Emmm——
The main idea

m Let different operating systems run at the same time on a single
computer

OWindows, Linux and Mac OS
1A real-time OS and a conventional OS
A production OS and a new OS being tested

=
How It IS done

= A hypervisor /VM monitor defines two or more virtual machines
[1Each virtual machine has
= Its own virtual CPU
= Its own virtual physical memory
= Its own virtual disk(s)

m Can also install VM on top of a host OS
0 VMware, Virtual Box, Parallels, QEMU

= SEmmmm——
The virtualization process

Actual Virtual Virtual
hardware hardware # 1

Memory

hardware # 2

RLLY IS
. g
“‘ LR SELLLLTION
* . .
o * o .
g ‘s o *
» . N ‘
ol .
» .
L - » .
H = [-
"
- -
. : ! n
'; L . :
CS Q . -
* * .
. * CS Q
- * e -
‘e [N ® o
LT T LN LN o
“tagaant

.......
...........
...................

= Emmm—
Reminder

= In a conventional OS,
OKernel executes in privileged/supervisor mode
= Can do virtually everything
[1User processes execute in user mode
= Cannot modify their page tables
= Cannot execute privileged instructions

= SR

A conventional architecture

User
mode

System call
Privileged
mode

Two virtual machines

User
Mode :

User
Mode :

Privileged
mode

= mmmm—
Explanations (ll)

m Whenever the kernel of a VM issues a privileged instruction, an
interrupt occurs

1 The hypervisor takes control and do the physical equivalent of

what the VM attempted to do:

= Must convert virtual RAM addresses into physical RAM
addresses

= Must convert virtual disk block addresses into physical block
addresses

=
Translating a block address

[Access block x, y j That's block v, w
of my virtual disk of the actual disk

VM kerneIJ/

Hypervisor

lllllllllll
........
" .Q

L} “'

'

0 .
L -
IIIIIIIIIIIIIIIIIII

Access block v, w .
of actual disk Actual disk

= Emmmm—
Handling 1/Os

= Difficult task because
1Wide variety of devices
[1Some devices may be shared among several VMs
= Printers
= Shared disk partition

OoWant to let Linux and Windows
access the same files

= Emmm——
Virtual Memory Issues

m Each VM kernel manages its own memory

[11ts page tables map program virtual addresses into what it
believes to be physical addresses

=
The dilemma

User process I Page 735 of process Ais }
st

A ored in page frame 435
a D
That's page frame 993 of

the actual RAM

VM kernef x %_/

Hypervisor

= Emmm—
Nastiest Issue

m The whole VM approach assumes that a kernel executing in user
mode will behave exactly like a kernel executing in privileged
mode except that privileged instructions will be trapped

m Not true for all architectures!
Cintel x86 Pop flags (POPF) instruction
...

=
The Virtual Box Solution

® VMware pioneered the approach

m Code Scanning and Analysis Manager (CSAM)

[1Scans privileged code recursively before its first execution to
identify problematic instructions

1Calls the Patch Manager (PATM) to perform in-situ patching

=
The Xen solution

= Modify the guest kernel to eliminate badly behaving instructions
such as POPF

C1Paravirtualization
C1Faster but less flexible
= Requires open-source kernel

User programs are not affected
¢ Only the kernel

= Emmmm—
Containers

m Each VM runs its own copy of the kernel
1 Takes memory space

m Containers provide isolated user-space instances that share the
same kernel

1Less overhead
[1Less flexibility
m Docker, LYXC

