
Chapter I

Introduction

Jehan-François Pâris

jfparis@uh.edu



Chapter Overview

◼ Defining operating systems

◼ Major functions of an OS

◼ Types of operating systems

◼ Unix

◼ Kernel organization



What is an operating system?

◼ “What stands between the user and the bare machine”



A better definition

◼ The basic software required to operate a computer.

◼ Has a similar role to that of the conductor of an orchestra



Do not belong to OS

◼ All user programs

◼ Compilers, spreadsheets, word processors, and so forth

◼ Most utility programs

 mkdir is a user program calling mkdir()

◼ The command language interpreter

 Anyone can write his/her Unix shell



The Unix shells

◼ Unix has several shells

sh (the Bourne shell) is the original Unix shell

csh was developed at Berkeley by Bill Joy 

ksh (the Korn shell) was developed by David Korn at AT&T Bell 

Laboratories

bash (the GNU Bourne-Again shell ) 

and the list is far from complete



The core of the OS

◼ Part that remains in main memory 

◼ Controls the execution of all other programs.

◼ Known as the kernel

 Also called monitor, supervisor, executive

◼ Other programs interact with it through system calls



System calls

Kernel

Program
System call /

system request



A question

◼ Who among you has already used system calls?



The answer

◼ All of you

All I/O operations are performed through system calls



The four missions



Missions of an OS

◼ Four basic functions

 To provide a better user interface

 To manage the system resources

 To protect users’ programs and data

 To let programs exchange information



A better user interface

◼ Accessing directly the hardware would be very cumbersome

◼ Must enter manually the code required to read into main memory 

each program 

boot strapping



How it was done (I)

PDP 8

◼ Early 70’s

◼ 12-bit machine

 4K RAM!



How it was done (II)

Toggle switches in front panel were used to 

enter the bootstrap code



Batch systems

◼ Allow users to submit a batches of requests to be processed in 

sequence

◼ Include a command language specifying what to do with the 

inputs

Compile

Link edit

Execute and so forth



An IBM 1401



Interactive systems

◼ Came later

◼ Allow users to interact with the OS through their terminals:

◼ Include an interactive command language 

 Unix shells, Windows PowerShell

Can also be used to write scripts



Time sharing

◼ Lets several interactive users to access a single computer at the 

same time

◼ Standard solution when computers were expensive



Graphical user interfaces

◼ Called GUIs (pronounced goo-eys): 

Macintosh, Windows, X-Windows, Linux

Require a dedicated computer for each user

Pioneered at Xerox Palo Alto Research Center (Xerox PARC)

Popularized by the Macintosh

Dominated the market with MS Windows



The Xerox Alto



Xerox PARC (I)

◼ Founded by XEROX in 1970

◼ Invented

 Laser printing

 Ethernet

 The GUI paradigm

 Object-oriented programming (Smalltalk)



Xerox PARC (II)

◼ All their inventions were brought to market by other concerns

◼ Popular belief is that Xerox management blew it

◼ In reality

Alto workstations were very expensive

Smalltalk was very slow

Group was too small to deliver a full system



Smart phones

◼ Convergence of trends

Better cellular connectivity

Cheaper LCD displays

Solid-State Storage (SSD)

 Inexpensive wireless networks (WiFi)



History repeats itself

◼ First successful devices introduced by Apple

 iPod, iPhone, iPad, …

◼First iPad was underpowered

◼ Competition soon grows

Cheaper Android devices



With a difference!

◼ Apple did not "steal" the concept from anyone

◼ iPods, iPhones, iPads were an instant success

Reasonably priced 



Two models

◼ Apple:

Closed ecosystem
(walled garden)

Strict controls on app 
market

Missing features

◼No file system

◼ Android:

Just the opposite

Lax controls on app market

Can access Linux/Android 
shell



Is a walled garden the paradise?



Summary

◼ Six major steps

Bare bone machine

Batch systems

Timesharing

Personal computer

Personal computer with GUI

Smart phone/tablet



File systems

◼ Let users create and delete files without having to worry about 

disk allocation

Users lose the ability to specify how their files are stored on the 

disk

Database designers prefer to bypass the file system

◼ Some file systems tolerate disk failures (RAID) 



Managing system resources

◼ Focus of the remainder of the course

◼ Not an easy task

Enormous gap between CPU speeds and disk access times 



The memory hierarchy (I)

Level Device Access 

Time

1 Fastest registers (2 GHz) 0.5 ns 

2 Main memory 10-70 ns 

3 Secondary storage (flash) 35-100 μs 

4 Secondary storage (disk) 3-12 ms

5 Mass storage (off line) a few s 



The memory hierarchy (II)

◼ To make sense of these numbers, let us consider an analogy



Writing a paper (I)

Level Resource Access Time

1 Open book on desk 1 s 

2 Book on desk

3 Book in UH library

4 Book in another library

5 Book very far away



Writing a paper (II)

Level Resource Access Time

1 Open book on desk 1s 

2 Book on desk 20-140 s 

3 Book in UH library

4 Book in another library

5 Book very far away



Writing a paper (III)

Level Resource Access Time

1 Open book on desk 1s 

2 Book on desk 20-140s 

3 Book in UH library 20-55h

4 Book in another library

5 Book very far away



Writing a paper (IV)

Level Resource Access Time

1 Open book on desk 1 s 

2 Book on desk 20-140 s 

3 Book in UH library 20-55 h

4 Book in another library 70-277 days

5 Book very far away



Writing a paper (V)

Level Resource Access Time

1 Open book on desk 1 s 

2 Book on desk 20s-140 s 

3 Book in UH library 20-55 h

4 Book in another library 70-277 days

5 Book very far away > 63 years



Will the problem go away?

◼ New storage technologies

Cheaper than main memory

Faster than disk drives

◼ Flash drives

◼ Optane memory



Flash drives

◼ Offspring of EEPROM memories

◼ Fast reads

Block-level

◼ Slower writes

Whole page of data must be erased then rewritten

◼ Can only go through a finite number of

program /erase cycles



Optane memory 

◼ Byte-addressable non-volatile memory (BNVM)

◼ Simpler design

Bits are stored as resistivity levels of a secret alloy

No transistors (≠ SRAM and DRAM)

◼ Faster than flash

 100-300 ns

◼ Dropped by Intel last year



Optimizing disk accesses

◼ Two main techniques

Making disk accesses more efficient

Doing something else while waiting for an I/O operation

◼ Not very different from what we are doing in our every day's lives



Optimizing read accesses (I)

◼ When we shop in a market that’s far away from our home, we 

plan ahead and buy food for several days

◼ The OS will read as many bytes as it can during each disk 

access

 In practice, entire blocks (4KB or more)

 Blocks are stored in the I/O buffer



Optimizing read accesses (II)

• Most small read requests 

can be completed without

any disk access

Process

I/O buffer

Disk

Read operation

Physical I/O



Optimizing read accesses (III)

◼ Buffered reads work quite well

 Most systems use it

◼ Major limitation

 Cannot read too much ahead of the program

◼ Could end bringing into main memory data that would 

never be used



Optimizing read accesses (IV)

◼ Can also keep in a buffer recently accessed blocks hoping they 

will be accessed again

Caching

◼ Works very well because we keep accessing again and again the 

data we are working with

◼ Caching is a fundamental technique of 

OS and database design



Optimizing write accesses (I)

◼ If we live far away from a library, we wait until we have several 

books to return before making the trip

◼ The OS will delay writes for a few seconds then

write an entire block

Since most writes are sequential, most small writes will not 

require any disk access



Optimizing write accesses (II)

◼ Delayed writes work quite well

Most systems use it

◼ Major drawback

 We will lose data if the system or the program crashes

◼ After the program issued a write but 

◼ Before the data were saved to disk 

 Unless we use NVRAM



Doing something else

◼ When we order something on the web, we do not remain idle until 

the goods are delivered

◼ The OS can implement multiprogramming and let the CPU run 

another program while a program waits for an I/O 



Advantages (I)

◼ Multiprogramming is very important in business applications

Many of these applications use the peripherals much more than 

the CPU

For a long time the CPU was the most expensive component of 

a computer

Multiprogramming was invented to keep the CPU busy



Advantages (II)

◼ Multiprogramming made time-sharing possible

◼ Multiprogramming lets your PC run several applications at the 

same time

MS Word and MS Outlook



Multiprogramming (I)

◼ Multiprogramming lets the CPU divide its time among different 

tasks:

◼ One tenth of a second on a program, then another tenth of a 

second on another one and so forth

◼ Each core of your CPU will still be working on one single task at 

any given time 



Multiprogramming (II)

◼ The CPU does not waste any time waiting for the completion of 

I/O operations 

◼ From time to time, the OS will need to regain control of the CPU

 Because a task has exhausted its fair share of the CPU time 

 Because something else needs to be done.

◼ This is done through interrupts.



Interrupts (I)

◼ Request to interrupt the flow of execution the CPU

◼ Detected by the CPU hardware

 After it has executed the current instruction

 Before it starts the next instruction.



A very schematic view (I)

◼ A very basic CPU would execute the following loop:

forever {
fetch_instruction();
decode_instruction();
execute_instruction();

}

◼ Pipelining makes things more complicated

 And CPU much faster!



A very schematic view (II)

◼ We add an extra step:

forever {
check_for_interrupts();
fetch_instruction();
decode_instruction();
execute_instruction();

}



Interrupts (II)

◼ When an interrupt occurs:

a. The current state of the CPU (program counter, program 

status word, contents of registers, and so forth) is saved, 

normally on the top of a stack

b. A new CPU state is fetched



Interrupts (III)

◼ New state includes a new hardware-defined value for the 

program counter

 Cannot “hijack” interrupts 

◼ Process is totally transparent to the task being interrupted 

 A process never knows whether it has been interrupted or not



Types of interrupts (I)

◼ I/O completion interrupts

 Notify the OS that an I/O operation has completed,

◼ Timer interrupts

 Notify the OS that a task has exceeded its quantum of core 

time



Types of interrupts (II)

◼ Traps

 Notify the OS of a program error (division by zero, illegal op 

code, illegal operand address, ...) or a hardware failure

◼ System calls

 Notify OS that the running task wants to submit a request to 

the OS



A surprising discovery

◼ Programs do interrupt themselves!



Context switches

◼ Each interrupt will result into two context switches:

 One when the running task is interrupted 

 Another when it regains the CPU 

◼ Context switches are not cheap

◼ The overhead of any simple system call is

two context switches

Remember that!



Prioritizing interrupts (I)

◼ Interrupt requests may occur while the system is processing 

another interrupt 

◼ All interrupts are not equally urgent (as it is also in real life

 Some are more urgent than other

 Also true in real life



Prioritizing interrupts (II)

◼ The best solution is to prioritize interrupts and assign to each 

source of interrupts a priority level

 New interrupt requests will be allowed to interrupt lower-priority 

interrupts but will have to wait for the completion of all other 

interrupts 

◼ Solution is known as vectorized interrupts. 



Example from real life

◼ Let us try to prioritize

Phone is ringing 

Washer signals end of cycle

Dark smoke is coming out of the kitchen

 …

◼ With vectorized interrupts, a phone call will never interrupt another 

phone call



The solution

Smoke in the kitchen

Phone is ringing

End of washer cycle

More low-priority stuff



Disabling Interrupts

◼ We can disable interrupts

◼ OS does it before performing short critical tasks that cannot be 

interrupted

Works only for single-threaded kernels

◼ User tasks must be prevented from doing it

Too dangerous 



DMA

◼ Disk I/O poses a special problem

CPU will have to transfer large quantities of data between the 
disk controller's buffer and the main memory

◼ Direct memory access (DMA) allows the disk controller to read 
data from and write data to main memory without any CPU 
intervention

Controller “steals” memory cycles from CPU



Protecting users’ data (I)

◼ Unless we have an isolated single-user system, we must prevent 

users from

 Accessing

 Deleting

 Modifying

without authorization other people's programs and data



Protecting users’ data (II)

◼ Two aspects

 Protecting user's files on disk

 Preventing programs from interfering with each other 

◼ Two solutions

 Dual-mode CPUs

 Memory protection



Historical Considerations

◼ Earlier operating systems for personal computers did not have 

any protection

They were single-user machines

They typically ran one program at a time 

◼ Windows 2000, Windows XP, Vista and MacOS X are protected 



Protecting users’ files

◼ Key idea is to prevent users’ programs from directly accessing the 

disk

◼ Will require I/O operations to be performed by the kernel

◼ Make them privileged instructions 

 Only the kernel can execute



Privileged instructions 

◼ Require a dual-mode CPU

◼ Two CPU modes

Privileged mode or executive mode

◼ Allows CPU to execute all instructions

User mode

◼ Allows CPU to execute only safe unprivileged instructions

◼ State of CPU is determined by a special bit



Kernel

User Process

X

All disk/SSD accesses must go through the kernel



Switching between states

◼ User mode will be the default mode for all programs

Only the kernel can run in supervisor mode

◼ Switching from user mode to supervisor mode is done through an 

interrupt 

Safe because the jump address is at a well-defined location in 

main memory



Performing an I/O

I/O request

(interrupt)

Physical I/O 

(executed by the kernel)

User Process

Kernel



An analogy (I)

◼ Most UH libraries are open stacks

 Anyone can consult books in the stacks and bring them to 

checkout

◼ National libraries and the Library of Congress have

closed stack collections

 Users fill a request for a specific document

 A librarian will bring the document to the circulation desk



An analogy (II)

◼ Open stack collections 

 Let users browse the collections

 Users can misplace or vandalize books

◼ Closed stack collections

 Much slower access

 Much safer



More trouble

◼ Having a dual-mode CPU is not enough to protect user’s files

◼ Must also prevent rogue users from tampering with the kernel

 Same as a rogue customer bribing a librarian in order to steal 

books

◼ Done through memory protection



Memory protection (I)

◼ Prevents programs from accessing any memory location outside 

their own address space 

◼ Requires special memory protection hardware

 Memory Management Unit (MMU)

◼ Memory protection hardware 

 Checks every reference issued by program

 Generates an interrupt when it detects a protection violation



Memory protection (II)

◼ Has additional advantages:

Prevents programs from corrupting address spaces of other 

programs

Prevents programs from crashing the kernel

◼Not true for device drivers which are inside the kernel

◼ Required part of any multiprogramming system



Memory protection (III)

memory address

Main memory

CPU

MAR

MMU

MMU

checks all

memory 

references



Even more trouble 

◼ Having both a dual-mode CPU and memory protection is not 

enough to protect user’s files

◼ Must also prevent rogue users from booting the system with a

doctored kernel

 Example:

◼ Can run Linux from a “live” CD Linux 

◼ Linux will read all NTFS files ignoring all restrictions set up 

by Windows



Inter-process communication

◼ Has become very important over the last thirty years

◼ Two techniques

 Message passing

◼ General but not very easy to use

 Shared memory

◼ Less general, easier to use but requires

inter-process synchronization



ANOTHER VIEW

◼ Arpaci-Dusseau & Arpaci-Dusseau

 Focus on services provided by OSes

◼ Three themes

 Virtualization

 Concurrency

 Persistence



Virtualization

◼ The process abstraction

◼ Virtualizing the CPU:

Process scheduling

◼ Virtualizing the memory:

Memory management



Concurrency

◼ Threads

◼ Locks

◼ Semaphores

We will cover threads in

the chapter on processes

because they are essential

to the client-server model



Persistence

◼ The file system



Types of operating systems



Overview

◼ Already discussed:

Batch systems

Time-sharing systems

◼ Will now introduce 

Real-Time systems

Operating systems for multiprocessors

Distributed systems



Real-time systems

◼ Designed for applications with strict real-time constraints :

 Process control

 Guidance systems

 Most multimedia applications 

◼ Must guarantee that critical tasks will always be performed within 

a specific time frame.



Hard RT systems

◼ Must guarantee that all deadlines will always be met 

◼ Any failure could have catastrophic consequences:

 The reactor could overheat and explode

 The rocket could be lost 



Soft RT systems

◼ Guarantee that most deadlines will be met

◼ A DVD decoder that miss a deadline will spoil our viewing 

pleasure for a fraction of a second



Observations

◼ Hard RT applications normally run on special RT OSes

◼ Soft RT applications can run on a regular OS

 If the OS supports them

◼ Interactive and time-sharing systems are not RT systems

They attempt to provide a fast response time but do not try to 

meet specific deadlines



Multiprocessor operating systems 

◼ Designed for multiprocessor architectures

Several processors share the same memory 

CPU CPU CPU CPU

MEMORY

CACHE CACHE CACHE CACHE



Leader/follower multiprocessing

◼ Single copy of OS runs on a dedicated core/processor

 Leader (previously called master)

◼ Other cores/processors can only run applications

Followers (previously called slaves)

◼ Major advantage is simplicity

Requires few changes

◼ Major disadvantage is lack of scalability

Single copy of OS can become a bottleneck



Symmetric multiprocessing

◼ Any core/processor can perform all functions

There can be multiple copies of the OS running in parallel 

◼ Must prevent them from interfering with each other 

Disabling interrupts will not work

Must add locks to all critical sections



The state of the art

◼ Most computers now have multicore CPUs

Sole practical way to increase CPU power

◼ Many have powerful GPUs

Highly parallel

◼ Using multicore architectures in an effective way is a huge 

challenge



Distributed systems 

◼ Integrated networks of computers

Workstations sharing common resources (file servers, 

printers, …)

◼ Current trend is to leave systems very loosely coupled

Each computer has its own OS



Client /Server Model

◼ Servers wait for requests from

clients and process them

 File servers

 Print servers

 Authentication servers

CLIENT

SERVER

request

reply



A typical sequential server

for (;;){

//wait for request

get_request(…);

// process it

process_request(…);

// send reply

send_reply(…);

} // forever



Network file system

◼ Lets several workstations share files stored 

on a common file server

SERVER



Performance Issues

◼ Response time is the main issue

Network latency is now added to disk latency

◼ Will attempt to mask these two latencies 

Extensive client caching

Works very well



File consistency issues (I)

◼ What happens if a file F is simultaneously 

modified on two distinct workstations? 

SERVER

F



File consistency issues (II)

◼ Client caches will hold different versions

F’ and F’’ of file F

SERVER

F

F’ F”



File Consistency Issues (III)

◼ Maintaining file consistency is a very important issue in 

distributed/networked file system design

◼ Different systems use different approaches

 NFS from Sun Microsystems

 AFS/Coda from CMU

 …



Other distributed systems issues

◼ Authenticating users

 A problem in open networks

◼ Making distributed systems as reliable as stand-alone systems

 Replication of data and services

◼ Keeping the clocks of the machines more or less synchronized.



Unix and Linux



Unix (I)

◼ Started at Bell Labs in the early 70's as an attempt to build a 

sophisticated time-sharing system on a very small minicomputer.

◼ First OS to be almost entirely written in C 

◼ Ported to the VAX architecture in the late 70’s at U. C. Berkeley: 

 Added virtual memory and networking



The fathers of Unix

Ken Thompson and Denis Ritchie



Unix (II)

◼ Became the standard operating systems for workstations

 Selected by Sun Microsystems

◼ Became less popular because

 Too many variants

◼ Berkeley BSD, ATT System V, …

 PCs displaced workstations

 Windows is easier to use

◼ Especially by newbies! 



Unix Today

◼ Several free versions exist (FreeBSD, Linux):

 Free access to source code

◼ Ideal platform for OS research

◼ Apple OS X runs on the top of an updated version of BSD

◼ Android runs on top of a heavily customized Linux kernel

◼ Chrome runs on top of a vanilla Linux OS



A Rapid Tour

◼ Unix kernel is the core of the system and handles the system calls

◼ Unix has several shells: sh, csh, ksh, bash

◼ On-line command manual: 

man xyz

displays manual page for command xyz

man 2 xyz

displays manual page for system call xyz(…)



Most Lasting Impact

◼ First OS that 

 Run efficiently on very different platforms

 Had its source code made available to its users

◼ File system inspired most more recent OSes

◼ Remains the best platform for OS research



Kernel organizations



Three basic organizations

◼ Monolithic kernels:

The default

◼ Layered kernels:

A great idea that did not work

◼ Microkernels:

Hurt by the high cost of context switches



Monolithic kernels

◼ No particular organization

 All kernel functions share the same address space

 This includes device drivers and other kernel extensions

◼ Fastest

◼ Lack of internal organization makes the kernel

hard to manage, extend, and debug



MS-DOS

Resident System Program

MS-DOS Device Drivers

BIOS Device Drivers



The BIOS

◼ Basic Input-Output System

◼ Stored on a chip

 First ROM, now EEPROM

◼ Takes control of CPU when system is turned on

 Identifies system components

 Initiates booting of operating system 

◼ Also provides low-level I/O access routines



The “curse”

◼ Hardware lacked dual mode and hardware memory protection

Nothing prevented application programs from accessing directly 

the BIOS

Program accessing disk files through BIOS I/O routines 

assumed a given disk organization

◼Changing it became impossible 



Its impact

◼ For a long time, Microsoft could not make radical changes to its 

FAT-16 disk organization

◼ Windows XP and all modern operating systems prevent user 

programs from bypassing the kernel.



Unix

◼ Monolithic kernel contains everything that is not device-specific

including file system, networking code, and so forth. 

Monolithic kernel

Terminal, device and memory controllers



Layered kernel

◼ Proposed by Edsger Dijkstra

◼ Implemented as a hierarchy of layers:

◼ Each layer defines a new data object

Hiding from the higher layers some functions of the lower layers

 Providing some new functionality



THE operating system kernel

◼ (named after Dutch initials of T. U. Eindhoven)

User programs

Buffering for I/O devices

Operator console device driver

Memory management

CPU scheduling

Hardware



Limitations

◼ Layered design works extremely well for networking code

 Each layer offers its own functionality

◼ Much less successful for kernel design

 No clear ordering of layers

◼ Memory management uses file system features and

vice versa

BAD
IDEA



Microkernels

◼ A reaction against “bloated” monolithic kernels

 Hard to manage, extend, debug and secure

◼ Key idea is making kernel smaller by delegating non-essential 

tasks to trusted user-level servers

 Same idea as subcontracting

◼ Microkernel keeps doing what cannot be delegated:

Security, short-term scheduling, …



How it works (I)

Trusted serverUser program

Small

microkernel



How it works (II)

◼ Microkernel

 Receives request from user program

 Decides to forward it to a user-level server

 Waits for reply for server

 Forwards it to user program

◼ Trusted servers run outside the kernel

 Cannot execute privileged instructions



Advantages

◼ Kernel is smaller, easier to secure and manage

◼ Servers run outside of the kernel

 Cannot crash the kernel

 Much easier to extend kernel functionality 

◼ Adding new servers

◼ Adding an NTFS server to Unix microkernel



Major disadvantage

◼ Too slow

Four context switches instead of two

• Speed remains an essential concern

• We don’t like to trade speed for safety (or 

anything else)



A conventional kernel

User program

Conventional kernel

Each system call occasions

two context switches

Each system call occasions

two context switches



A microkernel

User program

Smaller microkernel

Trusted server

Four context switches



Mach

◼ Designed in mid 80’s to replace Unix kernel

◼ New kernel with different system calls

Unix system calls are routed to an

emulation server

◼ Emulation server was designed to run in user space

Slowed down the system

Server ended inside the kernel



MINIX 3

◼ MINIX 1 was designed for teaching OS internals

Predates Linux

◼ Now aimed at high reliability (embedded) applications

 More willing to trade space for reliability

◼ Runs on x86 and ARM processors

◼ Compatible with NetBSD 



MINIX 3 microkernel

◼ "Tiny" (12,700 lines) microkernel 

Handles interrupts and message passing 

Only code running in kernel mode 

◼ Other OS functions are handled by

isolated, protected, user-mode processes 

Each device driver is a separate user-mode process 

System automatically restarts crashed drivers



Modular kernels

◼ Linux, Windows 

◼ Modules are object files whose contents can be linked to—and 

unlinked from—the kernel at any time

Run inside the kernel address space

Used to add to the kernel device drivers for new devices



Advantages of modular kernels

◼ Extensibility:

 Can add new features the kernel 

 In many cases, the process is completely transparent to the 

user 

◼ Lack of performance penalty:

 Modules run in the kernel address space



Their disadvantages

◼ Lower reliability

 A bad module can corrupt the whole kernel and crash the 

system.

◼ Serious problem

 Many device drivers are poorly written

 Device drivers account for 85% of reported failures of 

Windows XP



Current state of the art

Unix

Mach Windows

safe fast

extensible



Why?

◼ Unix has a monolithic kernel (which makes it fast) and does not 

allow extensions (which makes it both safe and non-extensible)

◼ Windows has a monolithic kernel (which makes it fast) and allows 

extensions (which makes it both extensible and unsafe)

◼ Mach allows extensions in user space (which makes it extensible, 

safe and slow)



Virtual machines



The main idea

◼ Let different operating systems run at the same time on a single 

computer

Windows, Linux and Mac OS

A real-time OS and a conventional OS

A production OS and a new OS being tested



How it is done

◼ A hypervisor /VM monitor defines two or more virtual machines

Each virtual machine has

◼ Its own virtual CPU

◼ Its own virtual physical memory

◼ Its own virtual disk(s)

◼ Can also install VM on top of a host OS

VMware, Virtual Box, Parallels, QEMU



The virtualization process

Actual 

hardware

CPU

Memory

Disk

Virtual 

hardware # 2

CPU

Memory

Disk

Virtual 

hardware # 1

CPU

Memory

Disk

Hypervisor



Reminder 

◼ In a conventional OS,

Kernel executes in privileged/supervisor mode

◼Can do virtually everything

User processes execute in user mode

◼Cannot modify their page tables

◼Cannot execute privileged instructions



Kernel

Privileged

mode

User

mode

User processUser process

System call

A conventional architecture



Two virtual machines

User

Mode

User

Mode

Hypervisor
Privileged

mode

User

process

VM Kernel

User

process

User

process

VM Kernel

User

process



Explanations (II)

◼ Whenever the kernel of a VM issues a privileged instruction, an 

interrupt occurs

The hypervisor takes control and do the physical equivalent of 

what the VM attempted to do:

◼Must convert virtual RAM addresses into physical RAM 

addresses

◼Must convert virtual disk block addresses into physical block 

addresses 



Translating a block address

VM kernel

Virtual disk

Access block x, y

of my virtual disk
That's block v, w 

of the actual disk

Actual disk

Hypervisor

Access block v, w

of actual disk



Handling I/Os

◼ Difficult task because

Wide variety of devices

Some devices may be shared among several VMs

◼Printers

◼Shared disk partition

Want to let Linux and Windows

access the same files



Virtual Memory Issues

◼ Each VM kernel manages its own memory

 Its page tables map program virtual addresses into what it 

believes to be physical addresses



The dilemma

User process

A

VM kernel

Page 735 of process A is 

stored in page frame 435

That's page frame 993 of 

the actual RAM

Hypervisor



Nastiest Issue

◼ The whole VM approach assumes that a kernel executing in user 

mode will behave exactly like a kernel executing in privileged 

mode except that privileged instructions will be trapped 

◼ Not true for all architectures!

 Intel x86 Pop flags (POPF) instruction

…



The Virtual Box Solution

◼ VMware pioneered the approach

◼ Code Scanning and Analysis Manager (CSAM) 

Scans privileged code recursively before its first execution to 

identify problematic instructions

Calls the Patch Manager (PATM) to perform in-situ patching



The Xen solution

◼ Modify the guest kernel to eliminate badly behaving instructions 

such as POPF

Paravirtualization

Faster but less flexible

◼Requires open-source kernel

User programs are not affected

❖ Only the kernel



Containers

◼ Each VM runs its own copy of the kernel

Takes memory space

◼ Containers provide isolated user-space instances that share the 

same kernel

Less overhead

Less flexibility

◼ Docker, LYXC


