
Chapter II

Processes

Jehan-François Pâris

jfparis@uh.edu

Chapter Overview

◼ Processes

◼ States of a process

◼ Operations on processes

 fork(), exec(), kill(), signal()

◼ Threads and lightweight processes

 POSIX threads

Processes

Definition

◼ A process is a program executing a given sequential

computation.

 An active entity unlike a program

 Think of the difference between a recipe in a cookbook and

the activity of a cook preparing a dish according to the recipe!

Processes and programs (I)

◼ Can have one program and many processes

 When several users execute the same program (text editor,

compiler, and so forth) at the same time, each execution of the

program constitutes a separate process

 A program that forks another sequential computation gives

birth to a new process.

Examples

◼ Several executions of same program

◼ A program forking a child

g++ g++ g++

a.out
a.out

Processes and programs (II)

◼ Can have one process and two—or more—programs

 A process that performs an exec() call replaces the program

it was executing

Examples

◼ One process executing two programs

 Typical of Unix/Linux processes

shell

ps

The UNIX shell

◼ Program that

Reads input from the keyboard

Creates the process that will execute the command.

Wait for the completion of the process it has created unless it

was specified otherwise

◼ User-level program that you and I could write

Yes, we can

#!/usr/bin/python3
""" A very very basic shell in Python 3

Check https://www.python-course.eu/forking.php
"""
import os
def changeDirectory(argc, argv) :

if argc == 2 :
try :

os.chdir(argv[1])
except Exception :

print("Pshell: " + argv[0] +
": no such file or directory")

elif argc == 1 :
os.chdir(os.environ['HOME'])

else :
print("Pshell: cd: too many arguments")

def vanillaCase(argc, argv) :
kidpid = os.fork()
if kidpid == 0 :

try :
os.execvp(argv[0], argv)

except Exception :
print(argv[0]+": program not found")

else :
os.wait()

while (1) :
argline = input("Pshell: ")
argline.strip()
argv = argline.split() # Break at spaces
argc = len(argv)
if argc == 0 :

continue
if argv[0] == 'exit' : # Exiting Pshell

break
elif argv[0] == 'cd' :

Changing current directory
changeDirectory(argc, argv)

else :
vanillaCase(argc, argv)

A very basic UNIX shell

◼ for (;;) {
parse_input_line(arg_vector);
if built_in_command(arg_vector[0]) {

do_it(arg_vector);
continue;

} // built-in command
pathname = find_path(arg_vector[0]);
create_process(pathname, arg_vector);
if (interactive())

wait_for_this_child();
} // for loop

Notes

◼ All functions in italics are templates yet to be written

◼ Real shells do more:

 I/O redirection

 Pipes (as in ls -alg | more)

 Command aliasing,

 Wildcard characters (as” *”)

 …

Importance of processes

◼ Processes are the basic entities managed by the operating

system

 OS provides to each process the illusion it has the whole

machine for itself

 Each process has a dedicated address space

The process address space

◼ Set of main memory locations allocated to the process

 Other processes cannot access them

 Process cannot access address spaces of other processes

◼ A process address space is the playpen or the sandbox of its

owner

A last word

◼ There are many quasi-synonyms for process:

 Job (very old programmers still use it)

 Task

 Program (strongly deprecated)

Process states

The five basic process states

◼ Processes go repeatedly through several stages during their

execution

 Waiting to get into main memory

 Waiting for the CPU

 Running

 Blocked while waiting for the completion of a system call

The big diagram

Running Terminated

New Ready Blocked

Admit process Completion

Interrupt

Get CPU

Exit

System request

This is fundamental material

Process arrival

◼ New process

 Starts in NEW state

 Gets allocated a Process Control Block (PCB) and

main memory

 Is put in the READY state waiting for CPU time

The ready state

◼ AKA the ready queue

◼ Contains all processes waiting for the CPU

◼ Organized as a priority queue

◼ Processes leave the priority queue when they get some CPU

time

 Move then to the RUNNING state

The running state (I)

◼ A process in the running state has exclusive use of the CPU until

 It terminates and goes to the TERMINATED state

 It does a system call and goes to the BLOCKED state

 It is interrupted and returns to the READY state

The running state (II)

◼ Processes are forced to relinquish the CPU and return to the

READY state when

 A higher-priority process arrives in the ready queue and

preempts the running process

◼ Get out, I’m more urgent than you!

 A timer interrupt indicates that the process has exceeded its

time slice of CPU time

The blocked state (I)

◼ Contains all processes waiting for the completion of a system

request:

 I/O operation

 Any other system call

◼ Process is said to be

 blocked (Arpaci-Dusseau & Arpaci-Dusseau)

 waiting

 sleeping (UNIX)

The blocked state (II)

◼ A system call that does not require callers to wait until its

completion is said to be non-blocking

 Calling processes are immediately returned to the READY

state

◼ The blocked state is organized as a set of queues

 One queue per device, OS resource

The process control block (I)

◼ Contains all the information associated with a specific process:

 Process identification (pid), argument vector, ...

◼ UNIX pids are unique integers

 Process state (new, ready, running, …),

 CPU scheduling information

◼ Process priority, processors on which the process can run,
...,

The process control block (II)

 Program counter and other CPU registers

◼ Including the Program Status Word (PSW),

 Memory management information

◼ Very system specific,

 Accounting information

◼ CPU time used, system time used, ...

 I/O status information

◼ List of opened files, allocated devices, …

The process table

◼ System-wide table containing

 Process identification (pid), argument vector, ...

 Process current state

 Process priority and other

CPU scheduling information

 A pointer to the remaining information.

Swapping

◼ Whenever the system is very loaded, we might want to expel from

main memory or swap out

 Low priority processes

 Processes that have been waiting for a long time for an

external event

◼ User is out of the office

◼ These processes are said to be swapped out or suspended.

How it works

Completion

InterruptAdmit process

Get CPU

Running Terminated

New Ready Blocked

Exit

System request

Suspended
Ready

Suspended

Blocked

Activate Deactivate
Deactivate

Completion

Suspended processes

◼ Suspended processes

 Do not reside in main memory

 Continue to be included in the process table

◼ Can distinguish between two types of suspended processes:

 Waiting for the completion of some request

(blocked_suspended)

 Ready to run (ready_suspended).

A warning

◼ A system should not swap out ready processes unless their

priority is very low

◼ Otherwise swapping out ready processes can only be a

desperate measure

Operations on processes
Process creation, deletion, …

The six essential operations

◼ Process creation
 fork()
 exec()

◼ Process synchronization
 wait()

◼ Process termination
 _exit()
 kill()
 signal()

Process creation

◼ Two basic system calls

 fork() creates a carbon-copy of calling process sharing its

opened files

 execv() overwrites the contents of the process address space

with the contents of an executable file

fork() (I)

◼ First process of a system is created when the system is booted

◼ All other processes are forked by another process

 Their parent process

 Said to be children of that process

fork() (II)

◼ When a process forks, OS creates an identical copy of forking

process with

 A new address space

 A new PCB

◼ The only resources shared by the parent and the child process

are the opened files

fork() (III)

fork()
fork()

Parent:

fork()

returns

PID of

child

Child:

fork()

returns 0

opened files

First example

◼ #include <iostream>
using namespace std;
main() {

fork();
cout << "Hello" << endl;

} // main

will print two lines as cout will be executed by both the parent

and the child

How it works

…
fork();
cout …;
…

…
fork();

cout …;
…

Second example

main() {

fork();

fork();
cout << "Hello" << endl;

} // main

will print four lines as cout will be executed by the parent, its two

children and its grandchild

How it works

…
F

F

C

…

…
F

F

C

…

…
F

F

C

…

…
F

F

C

…

Something smarter

int pid;
pid = fork();
if (pid == 0) {

// child process
...

} else {
// parent process
...

}

First simplification

int pid;
pid = fork();
if (pid == 0) {

// child process
...
_exit(0); // normal exit

} // if
// parent process continues

...

Second simplification

int pid;
if ((pid = fork()) == 0) {

// child process
...
_exit(0); // normal exit

} // if
// parent process continues

...

Waiting for child completion

◼ wait(0)

 Waits for the completion of any child

 No wait if any child has already completed

◼ while (wait(0) != kidpid)

 Waits for the completion of a specific child identified by its pid

An example (I)

◼ #include <iostream>
#include <sys/types.h>
#include <sys/wait.h>
using namespace std;

An example (II)

◼ main() {
int pid;
if((pid = fork()) == 0) {

cout << "Hello !" << endl;
_exit(0);

} // child
wait(0);
cout << "Goodbye!" << endl;

} // main

Why we needs loop

◼ UNIX keeps in its process table all processes that have

terminated but their parents have not yet waited for their

termination

 They are called zombie processes

◼ The statement

while (kidpid != wait(0));

is a loop with an empty body

Putting everything together (I)

int kidpid;
if ((kidpid = fork()) == 0) {

// child process
...
_exit(0); // normal exit

} // if
// parent waits for child
while (wait(0) != kidpid);

...

Must use the while
loop if the process
has already forked
other children

exec

◼ Whole set of exec() system calls

◼ Most interesting are
 execv(pathname, argv)
 execve(pathname, argv, envp)
 execvp(filename, argv)

◼ All exec() calls perform the same two tasks

 Erase current address space of process

 Load specified executable

execv

◼ execv(pathname, argv)

 char pathname[]

◼ full pathname of file to be loaded:

/bin/ls instead of ls

 char argv[][]

◼ the argument vector:

passed to the program to be loaded

Argument vector (I)

◼ An array of pointers to the individual argument strings

 arg_vector[0] contains the name of the program

as it appears in the command line

 Other entries are parameters

 End of the array is indicated by a NULL pointer

Argument vector (II)

◼ char argv[][];

◼ char **argv;

argv
argv[0]

argv[1]

NULL

“ls”

“-alg”

execve() and execvp()

◼ execve(pathname, argv, envp)

 Third argument points to a list of

environment variables

◼ execvp(argv[0], argv)

 Lets user specify a command name instead of a full pathname

 Looks for argv[0] in list of directories specified in environment
variable PATH

Putting everything together (II)

int pid
if ((pid = fork()) == 0) {

// child process
...
execvp(filename, argv);
_exit(1); // exec failed

} // if
while (pid != wait(0));
// parent waits
...

Observations (I)

◼ Not cheap

 fork() makes a complete copy

of parent address space

◼ Very costly in a virtual memory system

 exec() thrashes that address space

◼ Best solution is copy-on-write (COW)

When either of them modifies a page,

other gets its own copy of original page

Copy-on-write

Parent and child share same address space

COW of original page

Copy-on-write as a lazy approach

◼ Copy-on-write postpones address space copying until it is actually

needed

 Do the strict minimum

◼ Lazy approach

 Betting that very little copying will be actually needed

◼ An execv() will quickly follow

◼ Opposite is eager approach

Observations (II)

◼ Neither fork()nor exec()affect opened file descriptors

 They remain unchanged

◼ Important for UNIX I/O redirection mechanism

How this happened

◼ Fork was not that expensive on a minicomputer with a 16-bit

address space

 Never had to copy more than 64KB

◼ Using a fork/exec allowed a very easy implementation of I/O

redirection

 After the fork() thus in the child

 Before the exec() while parent is still in control

A very basic shell (I)

for (;;) {

parse_input_line(argv);

if built_in(argv[0]) {

do_it(arg_vector);

continue;

} //built_in command

path = find_path(argv[0]);

A very basic shell (II)

if ((pid = fork()) == 0) {

// put here I/O

// redirection code

execv(path, argv);

_exit(1); // execv failed

} //child process

if (interactive())

while (wait(0) != pid);

} // main for loop

Comments

◼ Shell built-in commands include

 exit
terminates the shell

 cd
changes current directory

◼ Commands are assumed to be interactive

 Non-interactive commands end with an “&”

Terminating a process (I)

◼ Sending a signal:

 kill() has two arguments

◼ The process id of the receiving process

◼ A signal name or a signal number

◼ #include <signal.h>
kill(this_pid, this_signal);

◼ Process receiving the signal will terminate

Terminating a process (II)

Process P

Process M

kill(M_pid, SIGINT);

What should I do? AARGH!

Catching a signal (I)

◼ The process receiving signal can catch it by using signal()

 Will not terminate

◼ signal(a_signal, catch_it);

◼ where catch_it points to a function that will be called

whenever signal a_signal signal is received.

◼ The ninth signal, SIGKIL, cannot be caught.

Catching a signal (II)

Process is now shielded by signal() call

Process M

kill(M_pid, SIGINT);Process P

Lightweight processes/threads

Kernel supported threads, user-level threads, POSIX threads (pthreads)

Limitations of processes

◼ Single threaded server:

 Processes one request at a time

for (;;) {
receive(&client, request);
process_request(...);
send(client, reply);

} // for

A basic question

◼ What does a server do when it does not process client

requests?

Three good answers

 Nothing

 It waits for client requests

 It “sleeps”

◼ Blocked state is sometimes called the sleep state

The problem

◼ Most client requests involve disk accesses

 File servers

 Authentications servers

◼ When this happens, the server remains in the BLOCKED state

 Cannot handle other customers’ requests

◼ Could end doing nothing most of the time

◼ Poor throughput (and long delays)

An analogy

◼ In most fast-food restaurants, counter employees process

customer orders one order at a time.

◼ Not be possible in a traditional restaurant

 A server that would only be able to wait on one table at a time

would be idle most of the time.

A first solution

int pid;
for (;;) {

receive(&client, request);
if ((pid = fork())== 0) {

process_request(...);
send(client, reply);
_exit(0); // done

} // if
} // for

The good and the bad news

◼ The good news:

 Server can now handle several user requests in parallel

◼ The bad news:

 fork() is a very expensive system call

◼ Has to create a new address space

A better solution

◼ Provide a faster mechanism for creating cheaper processes:

 Lightweight processes

 Threads

How?

◼ Lightweight processes and threads share the address space of

their parent

 No need to create a new address space

◼ Most expensive step of fork() system call

Is it not dangerous?

◼ To some extent because

 No memory protection inside an address space

 Lightweight processes can now interfere with each other

◼ But

 All lightweight process code is written by the same team

General Concept (I)

◼ A thread or lightweight process

 Does not have its own address space

 Shares it with its parent and other peer threads in the same

address space (task)

◼ Each thread has a program counter, a set of registers and its

own stack.

 Everything else is shared

General Concept (II)

◼ A regular process

(single-threaded)

◼ A process containing

several threads

Implementation

◼ Threads and LWPs can either be

 Kernel supported:

◼ Mach, Linux, Windows NT and after

 User-level:

◼ Pthread library, …

Kernel-Supported Threads (I)

◼ Managed by the kernel through system calls

◼ One process table entry per thread

◼ This is the best solution for multiprocessor architectures

 Kernel can allocate several processors to a single

multithreaded task

Kernel-Supported Threads (II)

◼ Supported by Mach, Linux, Windows NT and more recent systems

◼ Performance Issue:

◼ Switching between two threads in the same task involves a

system call

◼ Results in two context switches

Linux Threads

◼ clone (fn, stack, flags)

where

 fn specifies function to be executed by new thread or process

 stack points to the stack it will use

 flags is a set of flags specifying various options

◼ CLONE_VM for threads

◼ Regular process if CLONE_VM is missing

FYI

User-Level Threads (I)

◼ User-level threads are managed by procedures within the task

address space

 The thread library

◼ One process table entry per task/address space

 Kernel is not even aware that process is multithreaded

User-Level Threads (II)

◼ Can be retrofitted into an OS lacking thread support

 Portable thread libraries

◼ No performance penalty:

 Switching between two threads of the same task is done

cheaply within the task

 Same cost as a procedure call

User-Level Threads (III)

◼ Programming issue:

 Each time a thread does a blocking system call, kernel will

move the whole process to the blocked state

◼ It does not know better

 Must then use non-blocking system calls

◼ Complicates programmer’s task

User-Level Threads (IV)

sleep(5);

Kernel

Process wants to sleep for 5 seconds:

Should be moved it to the blocked state

POSIX Threads

◼ POSIX threads, or pthreads, started as pure user-level threads

managed by the POSIX thread library

 Gained later some kernel support

◼ Ported to various Unix and Windows systems (Pthreads-win32).

◼ Function names start with pthread_

◼ Calls tend to have a complex syntax

An Example (I)

#include <pthread.h>

static int count[2];

Static variables are shared by all threads

Other variables are stored on the private

stack of each thread.

FYI

An Example (II)

void *child(void *arg) {
int index;
index = (int) arg; // required
for(;;) {

printf("Child count: %d\n",
++count[index]);

sleep(1); // one second delay

} // for loop
} // child

FYI

An Example (III)

int main() {

thread_t tid; // thread id
int i = 0;
pthread_create(&tid, NULL,

child, (void *) i);
// pthread will execute
// "child" function

NULL stack address specifies
a new stack "anywhere"

FYI

An Example (IV)

i++; // now i == 1

while (count[i] < 12) {
printf("Parent count: %d\n", ++count[i]);
sleep(1); // one second delay

} // while loop
return 0;

} // main

FYI

Understanding pthread_create()

◼ pthread_create() has four arguments

 &tid
◼ Placeholder for thread_id

 NULL
◼ Stack address of new stack
◼ NULL means can be put “anywhere”

 start_function
◼ Void pointer to a function

 (void *) arg
◼ Sole argument passed to start_function

FYI

Comparing the approaches

Feature
Kernel

threads

User-level

threads

Portability

Multiprocessing

Performance

Ease of use

Which approach is the most portable?

Feature
Kernel

threads

User-level

threads

Portability 

Multiprocessing

Overhead

Ease of use

Which approach handles best multicores?

Feature
Kernel

threads

User-level

threads

Portability 

Multiprocessing 

Overhead

Ease of use

Which approach has the lowest overhead

Feature
Kernel

threads

User-level

threads

Portability 

Multiprocessing 

Overhead 

Ease of use

Which approach is easier to use?

Feature
Kernel

threads

User-level

threads

Portability 

Multiprocessing 

Overhead 

Ease of use 

Conclusion

◼ No clear winner between kernel-supported and user-level threads

◼ Solaris (from Sun, now taken over by Oracle)

 Supports both user-level threads and kernel threads

 Lets programmers combine them as they need

