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Chapter Overview

◼ Processes

◼ States of a process 

◼ Operations on processes 

 fork(), exec(), kill(), signal()

◼ Threads and lightweight processes

 POSIX threads



Processes



Definition

◼ A process is a program executing a given sequential 

computation.

 An active entity unlike a program

 Think of the difference between a recipe in a cookbook and 

the activity of a cook preparing a dish according to the recipe!



Processes and programs (I)

◼ Can have one program and many processes

 When several users execute the same program (text editor, 

compiler, and so forth) at the same time, each execution of the 

program constitutes a separate process

 A program that forks another sequential computation gives 

birth to a new process.



Examples

◼ Several executions of same program

◼ A program forking a child

g++ g++ g++

a.out
a.out



Processes and programs (II)

◼ Can have one process and two—or more—programs

 A process that performs an exec() call replaces the program 

it was executing 



Examples 

◼ One process executing two programs

 Typical of Unix/Linux processes

shell

ps



The UNIX shell

◼ Program that

Reads input from the keyboard 

Creates the process that will execute the command. 

Wait for the completion of the process it has created unless it 

was specified otherwise

◼ User-level program that you and I could write



Yes, we can

#!/usr/bin/python3
"""  A very very basic shell in Python 3

Check https://www.python-course.eu/forking.php
"""
import os
def changeDirectory(argc, argv) :

if argc ==  2 :
try :

os.chdir(argv[1])
except Exception :

print("Pshell: " + argv[0] + 
": no such file or directory")

elif argc == 1 :
os.chdir(os.environ['HOME'])

else :
print("Pshell: cd: too many arguments")

def vanillaCase(argc, argv) :
kidpid = os.fork()
if kidpid == 0 :

try :
os.execvp(argv[0], argv)

except Exception :
print(argv[0]+": program not found")

else :
os.wait()

while (1) :
argline = input("Pshell: ")
argline.strip()
argv = argline.split() # Break at spaces
argc = len(argv)
if argc == 0 :

continue
if argv[0] == 'exit' : # Exiting Pshell

break
elif argv[0] == 'cd' :

# Changing current directory
changeDirectory(argc, argv)

else :
vanillaCase(argc, argv)



A very basic UNIX shell

◼ for (;;) {
parse_input_line(arg_vector);
if built_in_command(arg_vector[0]) {

do_it(arg_vector); 
continue;

} // built-in command
pathname = find_path(arg_vector[0]);
create_process(pathname, arg_vector);
if (interactive())

wait_for_this_child();
} // for loop 



Notes

◼ All functions in italics are templates yet to be written

◼ Real shells do more:

 I/O redirection

 Pipes (as in ls -alg | more)

 Command aliasing,

 Wildcard characters (as” *”)

 …



Importance of processes

◼ Processes are the basic entities managed by the operating 

system

 OS provides to each process the illusion it has the whole 

machine for itself

 Each process has a dedicated address space



The process address space

◼ Set of main memory locations allocated to the process

 Other processes cannot access them

 Process cannot access address spaces of other processes

◼ A process address space is the playpen or the sandbox of its 

owner



A last word

◼ There are many quasi-synonyms for process:

 Job (very old programmers still use it)

 Task

 Program (strongly deprecated)



Process states



The five basic process states

◼ Processes go repeatedly through several stages during their 

execution

 Waiting to get into main memory

 Waiting for the CPU

 Running

 Blocked while waiting for the completion of a system call



The big diagram

Running Terminated

New Ready Blocked

Admit process Completion

Interrupt

Get CPU

Exit

System request

This is fundamental material



Process arrival

◼ New process 

 Starts in NEW state

 Gets allocated a Process Control Block (PCB) and

main memory 

 Is put in the READY state waiting for CPU time



The ready state

◼ AKA the ready queue

◼ Contains all processes waiting for the CPU

◼ Organized as a priority queue

◼ Processes leave the priority queue when they get some CPU 

time

 Move then to the RUNNING state



The running state (I)

◼ A process in the running state has exclusive use of the CPU until

 It terminates and goes to the TERMINATED state

 It does a system call and goes to the BLOCKED state

 It is interrupted and returns to the READY state



The running state (II)

◼ Processes are forced to relinquish the CPU and return to the 

READY state when

 A higher-priority process arrives in the ready queue and

preempts the running process

◼ Get out, I’m more urgent than you!

 A timer interrupt indicates that the process has exceeded its 

time slice of CPU time



The blocked state (I)

◼ Contains all processes waiting for the completion of a system 

request:

 I/O operation

 Any other system call

◼ Process is said to be

 blocked (Arpaci-Dusseau & Arpaci-Dusseau)

 waiting

 sleeping (UNIX )



The blocked state (II)

◼ A system call that does not require callers to wait until its 

completion is said to be non-blocking

 Calling processes are immediately returned to the READY

state

◼ The blocked state is organized as a set of queues

 One queue per device, OS resource



The process control block (I)

◼ Contains all the information associated with a specific process:

 Process identification (pid), argument vector, ...

◼ UNIX pids are unique integers

 Process state (new, ready, running, …),

 CPU scheduling information

◼ Process priority, processors on which the process can run, 
...,



The process control block (II)

 Program counter and other CPU registers

◼ Including the Program Status Word (PSW),

 Memory management information

◼ Very system specific,

 Accounting information

◼ CPU time used, system time used, ...

 I/O status information

◼ List of opened files, allocated devices, …



The process table

◼ System-wide table containing

 Process identification (pid), argument vector, ...

 Process current state 

 Process priority and other 

CPU scheduling information

 A pointer to the remaining information. 



Swapping

◼ Whenever the system is very loaded, we might want to expel from 

main memory or swap out

 Low priority processes 

 Processes that have been waiting for a long time for an 

external event

◼ User is out of the office

◼ These processes are said to be swapped out or suspended.



How it works

Completion

InterruptAdmit process

Get CPU
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New Ready Blocked

Exit
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Activate Deactivate
Deactivate

Completion



Suspended processes

◼ Suspended processes

 Do not reside in main memory

 Continue to be included in the process table

◼ Can distinguish between two types of suspended processes:

 Waiting for the completion of some request 

(blocked_suspended) 

 Ready to run (ready_suspended).



A warning

◼ A system should not swap out ready processes unless their 

priority is very low

◼ Otherwise swapping out ready processes can only be a 

desperate measure



Operations on processes
Process creation, deletion, …



The six essential operations 

◼ Process creation
 fork()
 exec()

◼ Process synchronization
 wait()

◼ Process termination
 _exit()
 kill()
 signal()



Process creation

◼ Two basic system calls 

 fork() creates a carbon-copy of calling process sharing its 

opened files

 execv() overwrites the contents of the process address space 

with the contents of an executable file



fork() (I)

◼ First process of a system is created when the system is booted

◼ All other processes are forked by another process

 Their parent process

 Said to be children of that process 



fork() (II)

◼ When a process forks, OS creates an identical copy of forking 

process with

 A new address space

 A new PCB

◼ The only resources shared by the parent and the child process 

are the opened files



fork() (III)

fork()
fork()

Parent:

fork()

returns 

PID of

child

Child:

fork()

returns 0

opened files



First example

◼ #include <iostream>
using namespace std;
main() {

fork();
cout << "Hello" << endl;

} // main

will print two lines as cout will be executed by both the parent 

and the child



How it works

…
fork(); 
cout …;
…

…
fork();

cout …;
…



Second example

main() {

fork();

fork();
cout << "Hello" << endl;

} // main

will print four lines as cout will be executed by the parent, its two 

children and its grandchild



How it works

…
F 

F

C

…

…
F

F 

C

…

…
F

F

C

…

…
F

F

C

…



Something smarter

int pid;
pid = fork();
if (pid == 0) {

// child process
...

} else {
// parent process
...

}



First simplification

int pid;
pid = fork();
if (pid == 0) {

// child process
...
_exit(0); // normal exit

} // if
// parent process continues

...



Second simplification

int pid;
if ((pid = fork()) == 0) {

// child process
...
_exit(0); // normal exit

} // if
// parent process continues

...



Waiting for child completion

◼ wait(0)

 Waits for the completion of any child

 No wait if any child has already completed

◼ while (wait(0) != kidpid)

 Waits for the completion of a specific child identified by its pid



An example (I)

◼ #include <iostream>
#include <sys/types.h>
#include <sys/wait.h>
using namespace std;



An example (II)

◼ main() {
int pid;
if((pid = fork()) == 0)  {

cout << "Hello !" << endl;
_exit(0);

} // child
wait(0);
cout << "Goodbye!" << endl;

} // main



Why we needs loop

◼ UNIX keeps in its process table all processes that have 

terminated but their parents have not yet waited for their 

termination

 They are called zombie processes

◼ The statement

while (kidpid != wait(0));

is a loop with an empty body



Putting everything together  (I)

int kidpid;
if ((kidpid = fork()) == 0) {

// child process
...
_exit(0); // normal exit

} // if
// parent waits for child
while (wait(0) != kidpid);

...

Must use the while 
loop if the process 
has already forked 
other children



exec

◼ Whole set of exec() system calls

◼ Most interesting are 
 execv(pathname, argv)
 execve(pathname, argv, envp)
 execvp(filename, argv)

◼ All exec() calls perform the same two tasks

 Erase current address space of process

 Load specified executable



execv

◼ execv(pathname, argv)

 char pathname[]

◼ full pathname of file to be loaded:

/bin/ls instead of ls

 char argv[][]

◼ the argument vector:

passed to the program to be loaded



Argument vector (I)

◼ An array of pointers to the individual argument strings

 arg_vector[0] contains the name of the program

as it appears in the command line

 Other entries are parameters

 End of the array is indicated by a NULL pointer



Argument vector (II)

◼ char argv[][];

◼ char **argv;

argv
argv[0]

argv[1]

NULL

“ls”

“-alg”



execve() and execvp()

◼ execve(pathname, argv, envp)

 Third argument points to a list of

environment variables

◼ execvp(argv[0], argv)

 Lets user specify a command name instead of a full pathname

 Looks for argv[0] in list of directories specified in environment 
variable PATH



Putting everything together  (II)

int pid
if ((pid = fork()) == 0) {

// child process
...
execvp(filename, argv); 
_exit(1); // exec failed

}  // if
while (pid != wait(0));
// parent waits
...



Observations (I) 

◼ Not cheap

 fork() makes a complete copy

of parent address space

◼ Very costly in a virtual memory system

 exec() thrashes that address space

◼ Best solution is copy-on-write (COW)



When either of them modifies a page,

other gets its own copy of original page

Copy-on-write

Parent and child share same address space

COW of original page



Copy-on-write as a lazy approach

◼ Copy-on-write postpones address space copying until it is actually 

needed

 Do the strict minimum

◼ Lazy approach

 Betting that very little copying will be actually needed

◼ An execv() will quickly follow

◼ Opposite is eager approach



Observations (II)

◼ Neither fork()nor exec()affect opened file descriptors

 They remain unchanged

◼ Important for UNIX I/O redirection mechanism



How this happened

◼ Fork was not that expensive on a minicomputer with a 16-bit 

address space

 Never had to copy more than 64KB

◼ Using a fork/exec allowed a very easy implementation of I/O 

redirection

 After the fork() thus in the child

 Before the exec() while parent is still in control



A very basic shell (I)

for (;;) {

parse_input_line(argv);

if built_in(argv[0]) {

do_it(arg_vector);

continue;

} //built_in command

path = find_path(argv[0]);



A very basic shell (II)

if ((pid = fork()) == 0) { 

// put here I/O

// redirection code

execv(path, argv);

_exit(1); // execv failed

} //child process

if (interactive())

while (wait(0) != pid);

} // main for loop



Comments 

◼ Shell built-in commands include

 exit
terminates the shell

 cd
changes current directory

◼ Commands are assumed to be interactive

 Non-interactive commands end with an “&”



Terminating a process (I)

◼ Sending a signal:

 kill() has two arguments

◼ The process id of the receiving process 

◼ A signal name or a signal number

◼ #include <signal.h> 
kill(this_pid, this_signal);

◼ Process receiving the signal will terminate



Terminating a process (II)

Process P

Process M

kill(M_pid, SIGINT);

What should I do? AARGH!



Catching a signal (I)

◼ The process receiving signal can catch it by using signal()

 Will not terminate

◼ signal(a_signal, catch_it);

◼ where catch_it points to a function that will be called 

whenever signal a_signal signal is received.

◼ The ninth signal, SIGKIL, cannot be caught. 



Catching a signal (II)

Process is now shielded by signal() call

Process M

kill(M_pid, SIGINT);Process P



Lightweight processes/threads

Kernel supported threads, user-level threads, POSIX threads (pthreads)



Limitations of processes

◼ Single threaded server:

 Processes one request at a time

for (;;) {
receive(&client, request);
process_request(...);
send(client, reply);

} // for



A basic question

◼ What does a server do when it does not process client 

requests?



Three good answers

 Nothing

 It waits for client requests

 It “sleeps”

◼ Blocked state is sometimes called the sleep state



The problem

◼ Most client requests involve disk accesses

 File servers

 Authentications servers

◼ When this happens, the server remains in the BLOCKED state

 Cannot handle other customers’ requests

◼ Could end doing nothing most of the time

◼ Poor throughput (and long delays)



An analogy

◼ In most fast-food restaurants, counter employees process 

customer orders one order at a time. 

◼ Not be possible in a traditional restaurant

 A server that would only be able to wait on one table at a time 

would be idle most of the time.



A first solution

int pid; 
for (;;) {

receive(&client, request);
if ((pid = fork())== 0) {

process_request(...);
send(client, reply);
_exit(0); // done

} // if 
} // for



The good and the bad news

◼ The good news:

 Server can now handle several user requests in parallel

◼ The bad news:

 fork() is a very expensive system call

◼ Has to create a new address space



A better solution

◼ Provide a faster mechanism for creating cheaper processes:

 Lightweight processes

 Threads 



How?

◼ Lightweight processes and threads share the address space of 

their parent

 No need to create a new address space

◼ Most expensive step of fork() system call



Is it not dangerous?

◼ To some extent because

 No memory protection inside an address space

 Lightweight processes can now interfere with each other

◼ But

 All lightweight process code is written by the same team



General Concept (I)

◼ A thread or lightweight process

 Does not have its own address space

 Shares it with its parent and other peer threads in the same 

address space (task)

◼ Each thread has a program counter, a set of registers and its 

own stack.

 Everything else is shared



General Concept (II)

◼ A  regular process

(single-threaded)

◼ A process containing 

several threads  



Implementation

◼ Threads and LWPs can either be

 Kernel supported:

◼ Mach, Linux, Windows NT and after

 User-level:

◼ Pthread library, …



Kernel-Supported Threads (I)

◼ Managed by the kernel through system calls

◼ One process table entry per thread

◼ This is the best solution for multiprocessor architectures

 Kernel can allocate several processors to a single 

multithreaded task



Kernel-Supported Threads (II)

◼ Supported by Mach, Linux, Windows NT and more recent systems

◼ Performance Issue:

◼ Switching between two threads in the same task involves a 

system call 

◼ Results in two context switches



Linux Threads 

◼ clone (fn, stack, flags)

where

 fn specifies function to be executed by new thread or process

 stack points to the stack it will use

 flags is a set of flags specifying various options 

◼ CLONE_VM for threads 

◼ Regular process if CLONE_VM is missing

FYI



User-Level Threads (I)

◼ User-level threads are managed by procedures within the task 

address space

 The thread library

◼ One process table entry per task/address space

 Kernel is not even aware that process is multithreaded



User-Level Threads (II)

◼ Can be retrofitted into an OS lacking thread support

 Portable thread libraries

◼ No performance penalty:

 Switching between two threads of the same task is done 

cheaply within the task

 Same cost as a procedure call



User-Level Threads (III)

◼ Programming issue:

 Each time a thread does a blocking system call, kernel will 

move the whole process to the blocked state

◼ It does not know better

 Must then use non-blocking system calls

◼ Complicates programmer’s task



User-Level Threads (IV)

sleep(5);

Kernel

Process wants to sleep for 5 seconds: 

Should be moved it to the blocked state



POSIX Threads

◼ POSIX threads, or pthreads, started as pure user-level threads 

managed by the POSIX thread library

 Gained later some kernel support

◼ Ported to various Unix and Windows systems (Pthreads-win32).

◼ Function names start with pthread_

◼ Calls tend to have a complex syntax 



An Example (I)

#include <pthread.h>

static int count[2];

Static variables are shared by all threads

Other variables are stored on the private 

stack of each thread.

FYI



An Example (II)

void *child(void *arg) {
int index;
index = (int) arg;  // required
for(;;) {

printf("Child count: %d\n",
++count[index]);

sleep(1); // one second delay

} // for loop
} // child

FYI



An Example (III)

int main() {

thread_t tid; // thread id 
int i = 0;
pthread_create(&tid, NULL, 

child, (void *) i);
// pthread will execute
// "child" function

NULL stack address specifies
a new stack "anywhere"

FYI



An Example (IV)

i++; // now i == 1

while (count[i] < 12) {
printf("Parent count: %d\n", ++count[i]);
sleep(1); // one second delay

} // while loop
return 0;

} // main

FYI



Understanding pthread_create()

◼ pthread_create() has four arguments

 &tid
◼ Placeholder for thread_id

 NULL
◼ Stack address of new stack
◼ NULL means can be put “anywhere”

 start_function
◼ Void pointer to a function

 (void *) arg
◼ Sole argument passed to start_function

FYI



Comparing the approaches

Feature
Kernel

threads

User-level

threads

Portability

Multiprocessing

Performance

Ease of use



Which approach is the most portable?

Feature
Kernel

threads

User-level

threads

Portability 

Multiprocessing

Overhead

Ease of use



Which approach handles best multicores?

Feature
Kernel

threads

User-level

threads

Portability 

Multiprocessing 

Overhead

Ease of use



Which approach has the lowest overhead

Feature
Kernel

threads

User-level

threads

Portability 

Multiprocessing 

Overhead 

Ease of use



Which approach is easier to use?

Feature
Kernel

threads

User-level

threads

Portability 

Multiprocessing 

Overhead 

Ease of use 



Conclusion

◼ No clear winner between kernel-supported and user-level threads

◼ Solaris (from Sun, now taken over by Oracle) 

 Supports both user-level threads and kernel threads

 Lets programmers combine them as they need 


