Chapter |l

Processes

Jehan-Francois Paris
jfparis@uh.edu

= Emmmm——
Chapter Overview

m Processes
m States of a process

m Operations on processes
1 fork(), exec(), kill(), signal()

m Threads and lightweight processes
0 POSIX threads

Processes

= Emmm—
Definition

m A process is a program executing a given sequential
computation.

1 An active entity unlike a program

00 Think of the difference between a recipe in a cookbook and
the activity of a cook preparing a dish according to the recipe!

= mmmm—
Processes and programs (I)

m Can have one program and many processes

0 When several users execute the same program (text editor,
compiler, and so forth) at the same time, each execution of the
program constitutes a separate process

1 A program that forks another sequential computation gives
birth to a new process.

- Emmmm——

Examples

m Several executions of same program

g++

= A program forking a child

g++

g++

Q.0 U { i

a.out

= Emmmm—
Processes and programs (ll)

= Can have one process and two—or more—programs

1 A process that performs an exec() call replaces the program
It was executing

= S
Examples

m One process executing two programs
1 Typical of Unix/Linux processes

shell

ps

= Emmm—
The UNIX shell

m Program that
1Reads input from the keyboard
1Creates the process that will execute the command.

O Wait for the completion of the process it has created unless it
was specified otherwise

m User-level program that you and | could write

Yes, we can

#!/usr/bin/python3
""" A very very basic shell in Python 3
Check https://www.python-course.eu/forking.php

import os
def changeDirectory(argc, argv) :
if argc == 2 :
try :

os.chdir(argv[1])
except Exception :
print("Pshell: " + argv[0] +
": no such file or directory")
elif argc == :
os.chdir(os.environ["HOME'])
else :
print("Pshell: cd: too many arguments")
def vanillaCase(argc, argv) :
kidpid = os.fork()
if kidpid == :
try :
os.execvp(argv[0], argv)
except Exception :
print(argv[@]+": program not found")
else :
os.wait()

while (1) :
argline = input("Pshell: ")
argline.strip()

argv = argline.split() # Break at spaces
argc = len(argv)

if argc ==
continue

if argv[@] == 'exit' : # Exiting Pshell
break

elif argv[@] == 'cd'

Changing current directory

changeDirectory(argc, argv)
else :

vanillaCase(argc, argv)

=
A very basic UNIX shell

= for (55) {

parse_input Line(arg_vector);

if built _in _command(arg_vector[0]) {
do_it(arg_vector);
continue;

} // built-in command

pathname = find path(arg vector[0]);

create _process(pathname, arg vector);

if (interactive())
wait_for_this_child();

} // for loop

-
Notes

m All functions in italics are templates yet to be written

m Real shells do more:
1 1/O redirection
1 Pipes (as in Is -alg | more)
1 Command aliasing,

1 Wildcard characters (as” *”)
...

= Emmm—
Importance of processes

m Processes are the basic entities managed by the operating
system

1 OS provides to each process the illusion it has the whole
machine for itself

1 Each process has a dedicated address space

=
The process address space

m Set of main memory locations allocated to the process
1 Other processes cannot access them
0 Process cannot access address spaces of other processes

m A process address space is the playpen or the sandbox of its
owner

= S
A last word

m There are many quasi-synonyms for process:
1 Job (very old programmers still use it)
0 Task

0 Program (strongly deprecated)

Process states

= Emmm—
The five basic process states

m Processes go repeatedly through several stages during their
execution

1 Waiting to get into main memory

1 Waiting for the CPU

1 Running

1 Blocked while waiting for the completion of a system call

"
The big diagram

Exit

System request

Get CPU

Interrupt
Blocked
Admit process Completion

‘This Is fundamental material ‘

- Emmm——
Process arrival

m New process
1 Starts in NEW state

1 Gets allocated a Process Control Block (PCB) and
main memory

1 Is put in the READY state waiting for CPU time

= Emmm—
The ready state

AKA the ready queue

Contains all processes waiting for the CPU

Organized as a priority queue

Processes leave the priority queue when they get some CPU
time

0 Move then to the RUNNING state

=
The running state ()

m Aprocess in the running state has exclusive use of the CPU until
1 It terminates and goes to the TERMINATED state
1 It does a system call and goes to the BLOCKED state
1 Itis interrupted and returns to the READY state

= mmmm—
The running state (ll)

m Processes are forced to relinquish the CPU and return to the
READY state when

1 A higher-priority process arrives in the ready queue and
preempts the running process

n Get out, I'm more urgent than you!

1 A timer interrupt indicates that the process has exceeded its
time slice of CPU time

= Emmm—
The blocked state (I)

m Contains all processes waiting for the completion of a system
request:

1 1/O operation
1 Any other system call

m Process is said to be
1 blocked (Arpaci-Dusseau & Arpaci-Dusseau)
1 waiting
1 sleeping (UNIX)

=
The blocked state (Il)

m A system call that does not require callers to wait until its
completion is said to be non-blocking

1 Calling processes are immediately returned to the READY
state

m The blocked state is organized as a set of queues
0 One queue per device, OS resource

= mmmm—
The process control block ()

m Contains all the information associated with a specific process:

1 Process identification (pid), argument vector, ...
= UNIX pids are unique integers

1 Process state (new, ready, running, ...),

1 CPU scheduling information
= Process priority, processors on which the process can run,

III,

=
The process control block (ll)

0 Program counter and other CPU registers
= Including the Program Status Word (PSW),

0 Memory management information
= Very system specific,
0 Accounting information
= CPU time used, system time used, ...

00 I/O status information
= List of opened files, allocated devices, ...

=
The process table

m System-wide table containing
0 Process identification (pid), argument vector, ...
1 Process current state

1 Process priority and other
CPU scheduling information

1 A pointer to the remaining information.

=
Swapping

m WWhenever the system is very loaded, we might want to expel from
main memory or swap out

1 Low priority processes

1 Processes that have been waiting for a long time for an
external event

m User is out of the office

m [hese processes are said to be swapped out or suspended.

"
How It works

Exit

Get CPU
System request

Admit process

Interrupt

Completion
Deactivate
Activate Deactivate

uspendec
R e

Completion

Blocked

= Emmm—
Suspended processes

m Suspended processes
1 Do not reside in main memory
1 Continue to be included in the process table

= Can distinguish between two types of suspended processes:

1 Waiting for the completion of some request
(blocked suspended)

1 Ready to run (ready_suspended).

= Emmmm——
A warning

m A system should not swap out ready processes unless their
priority is very low

m Otherwise swapping out ready processes can only be a
desperate measure

Operations on processes

Process creation, deletion, ...

- Emmm——
The six essential operations

m Process creation
0 fork()

[exec()

m Process synchronization
0 wait()

m Process termination
0 _exit()
0 kill()
1 signal()

=
Process creation

m [wo basic system calls

1 fork() creates a carbon-copy of calling process sharing its
opened files

1 execv() overwrites the contents of the process address space
with the contents of an executable file

= Emmmm——
fork() (1)

m First process of a system is created when the system is booted

m All other processes are forked by another process
1 Their parent process
1 Said to be children of that process

=
fork() (Il

® When a process forks, OS creates an identical copy of forking
process with

1 A new address space
A new PCB

m The only resources shared by the parent and the child process
are the opened files

g

fork() (1)
Parent:
fork() |
oot | ToTKOL L [forko)
child \ returns 0

opened files

=
First example

m #include <iostream>

using namespace std;
main() {

fork();

cout << "Hello" << endl;
} // main

will print two lines as cout will be executed by both the parent
and the child

= S

How It works

fork(); =
cout ...;\‘ﬁrk();

cout ..;

= Emmmm—
Second example

main() {
fork();

fork();
cout << "Hello" << endl;

} // main

will print four lines as cout will be executed by the parent, its two
children and its grandchild

=
How It works

Something smarter
int pid;
pid = fork();

if (pid == 0) {
// child process

} else {
// parent process

= Emmmm——
First simplification

int pid;
pid = fork();
if (pid == 0) {
// child process

_exit(@); // normal exit
} // if

// parent process continues

= Emmmm—
Second simplification
int pid;

if ((pid = fork()) == 0) {
// child process

_exit(@); // normal exit
} // if
// parent process continues

= Emmm—
Waiting for child completion
= wait(09)

1 Waits for the completion of any child
1 No wait if any child has already completed

® while (wait(@) != kidpid)
1 Waits for the completion of a specific child identified by its pid

= S
An example (I)

m #include <iostream>
#include <sys/types.h>
#include <sys/wait.h>
using namespace std;

= Emmmm—
An example (Il)

® main() {
int pid;
if((pid = fork()) == 0) {
cout << "Hello !" << endl;
_exit(oe);
} // child
wait(0);

cout << "Goodbye!" << endl;
} // main

=
Why we needs loop

m UNIX keeps in its process table all processes that have
terminated but their parents have not yet waited for their
termination

1 They are called zombie processes

m [he statement
while (kidpid !'= wait(9));
IS a loop with an empty body

=
Putting everything together (I)

int kidpid;
if ((kidpid = fork()) == 0) {
// child process

_exit(@); // normal exit

Y // if

// parent waits for child /ﬁwuspusethe\NhHe A
while (wait(@) != kidpid); loop if the process
has already forked

kother children y

e
exec

= \Whole set of exec() system calls

m Most interesting are
1 execv(pathname, argv)
1 execve(pathname, argv, envp)
1 execvp(filename, argv)

= All exec() calls perform the same two tasks
1 Erase current address space of process
1 Load specified executable

g
execv

= execv(pathname, argv)
1 char pathname]]

= full pathname of file to be loaded:
/bin/1ls instead of 1s

1 char argv[][]

= the argument vector:
passed to the program to be loaded

= Emmm—
Argument vector (I)

= An array of pointers to the individual argument strings

1 arg_vector[0] contains the name of the program
as it appears in the command line

1 Other entries are parameters

1 End of the array is indicated by a NULL pointer

g

Argument vector (l)

m char argv[][]1;
m char **argv;

argv ‘_,

argv|[o]

argv[1]

“Is”

NULL

“_alg”

= Emmm—
execve() and execvp()

= execve(pathname, argv, envp)

1 Third argument points to a list of
environment variables

m execvp(argv[O], argv)
1 Lets user specify a command name instead of a full pathname

1 Looks for argv[0@] in list of directories specified in environment
variable PATH

= Emmm—
Putting everything together (ll)

int pid
if ((pid = fork()) == 0) {
// child process

execvp(filename, argv);
_exit(1); // exec failed
y // if
while (pid != wait(0));
// parent waits

=
Observations (l)

= Not cheap

1 fork() makes a complete copy
of parent address space

= Very costly in a virtual memory system
1 exec() thrashes that address space

m Best solution is copy-on-write (COW)

= Emmm—
Copy-on-write

Parent and child share same address space

When either of them modifies a page,
other gets its own copy of original page

COW of original page

= Emmm—
Copy-on-write as a lazy approach

m Copy-on-write postpones address space copying until it is actually
needed

1 Do the strict minimum

m Lazy approach
1 Betting that very little copying will be actually needed
= An execv() will quickly follow

m Opposite is eager approach

- Emmm——
Observations (Il)

m Neither fork()nor exec()affect opened file descriptors
1 They remain unchanged

= Important for UNIX I/O redirection mechanism

=
How this happened

m Fork was not that expensive on a minicomputer with a 16-bit
address space

1 Never had to copy more than 64KB

m Using a fork/exec allowed a very easy implementation of 1/O
redirection

1 After the fork () thus in the child
1 Before the exec () while parent is still in control

=
A very basic shell (I)

for (55) {
parse_input_Line(argv);
if built in(argv[0]) {
do it(arg_vector);
continue;
} //built_in command
path = find path(argv[@]);

=
A very basic shell (ll)

if ((pid = fork()) == 0) {
// put here I/O
// redirection code
execv(path, argv);
_exit(1l); // execv failed
} //child process
if (interactive())
while (wait(@) != pid);
} // main for loop

= Emmmm—
Comments

m Shell built-in commands include

1 exit
terminates the shell

1 cd
changes current directory

@ Commands are assumed to be interactive
1 Non-interactive commands end with an “&”

=
Terminating a process ()

® Sending a signal:
0 kill() has two arguments
= The process id of the receiving process
= A signal name or a signal number

m #include <signal.h>
kill(this pid, this signal);

m Process receiving the signal will terminate

- Emmmm——

Terminating a process (ll)

Process P

kill(M_pid, SIGINT);

What should | do? AARGH!

=
Catching a signal ()

m The process receiving signal can catch it by using signal()
O Wil not terminate

m signal(a_signal, catch_it);

= where catch_it points to a function that will be called
whenever signal a_signal signal is received.

m The ninth signal, SIGKIL, cannot be caught.

= S
Catching a signal (ll)

Process P

kill(M_pid, SIGINT);

Process is now shielded by signal() call

Lightweight processes/threads

Kernel supported threads, user-level threads, POSIX threads (pthreads)

=
Limitations of processes

m Single threaded server:
1 Processes one request at a time

for (55) {
receive(&client, request);
process_request(...);
send(client, reply);

} // for

= S
A basic question

m What does a server do when it does not process client
requests?

- Emmmm——
Three good answers

1 Nothing
0 It waits for client requests

1 1t “sleeps”
m Blocked state is sometimes called the sleep state

=
The problem

m Most client requests involve disk accesses
1 File servers
1 Authentications servers

® When this happens, the server remains in the BLOCKED state
1 Cannot handle other customers’ requests

m Could end doing nothing most of the time

= Poor throughput (and long delays)

= Emmm—
An analogy

m /n most fast-food restaurants, counter employees process
customer orders one order at a time.

m Not be possible in a traditional restaurant

1 A server that would only be able to wait on one table at a time
would be idle most of the time.

= Emmm——
A first solution

int pid;
for (55) {
receive(&client, request);
if ((pid = fork())== 0) {
process_request(...);
send(client, reply);
_exit(@); // done
Yy // if
}y // for

= Emmm—
The good and the bad news

m The good news:
1 Server can now handle several user requests in parallel

m The bad news:
1 fork() is a very expensive system call
= Has to create a new address space

= S
A better solution

m Provide a faster mechanism for creating cheaper processes:
1 Lightweight processes

1 Threads

= Emmm——
How?

m Lightweight processes and threads share the address space of
their parent

1 No need to create a new address space
= Most expensive step of fork() system call

= Emmm—
Is it not dangerous?

m To some extent because
1 No memory protection inside an address space
1 Lightweight processes can now interfere with each other

m But
1 All lightweight process code is written by the same team

= Emmm—
General Concept (I)

m A thread or lightweight process
1 Does not have its own address space

1 Shares it with its parent and other peer threads in the same
address space (task)

m Each thread has a program counter, a set of registers and its
own stack.

(1 Everything else is shared

= Emmm——
General Concept (ll)

{ {4

m A regular process m A process containing
(single-threaded) several threads

-
Implementation

m Threads and LWPs can either be
1 Kernel supported:
= Mach, Linux, Windows NT and after
1 User-level:
= Pthread library, ...

=
Kernel-Supported Threads (I)

m Managed by the kernel through system calls

= One process table entry per thread

m This is the best solution for multiprocessor architectures

1 Kernel can allocate several processors to a single
multithreaded task

=
Kernel-Supported Threads (ll)

m Supported by Mach, Linux, Windows NT and more recent systems

m Performance Issue:

= Switching between two threads in the same task involves a
system call

= Results in two context switches

gie
Linux Threads S

m clone (fn, stack, flags)
where
0 fn specifies function to be executed by new thread or process
1 stack points to the stack it will use
1 flags is a set of flags specifying various options
= CLONE_VM for threads
= Regular process if CLONE_VM is missing

= Emmm—
User-Level Threads (l)

m User-level threads are managed by procedures within the task
address space

1 The thread library

®m One process table entry per task/address space
1 Kernel is not even aware that process is multithreaded

= Emmm—
User-Level Threads (I)

m Can be retrofitted into an OS lacking thread support
1 Portable thread libraries

= No performance penalty:

1 Switching between two threads of the same task is done
cheaply within the task

1 Same cost as a procedure call

= Emmm—
User-Level Threads (lIl)

m Programming issue:

1 Each time a thread does a blocking system call, kernel will
move the whole process to the blocked state

= |t does not know better
1 Must then use non-blocking system calls
m Complicates programmer’s task

= EEESS——
User-Level Threads (IV)

z z \Sleepﬁ) ;

= Emmm—
POSIX Threads

m POSIX threads, or pthreads, started as pure user-level threads
managed by the POSIX thread library

1 Gained later some kernel support
m Ported to various Unix and Windows systems (Pthreads-win32).
m Function names start with pthread _

m Calls tend to have a complex syntax

=
An Example (1) %

#include <pthread.h>
static int count[2];

Static variables are shared by all threads

Other variables are stored on the private
stack of each thread.

= Emmm—
An Example (lI)

void *child(void *arg) {
int index;
index = (int) arg; // required
for(;;) {
printf("Child count: %d\n",
++count[index]);
sleep(1l); // one second delay

} // for loop
} // child

=
An Example (lI1)

int main() {

thread_t tid; // thread id
int 1 = 0;
pthread create(&tid, NULL,
child, (void *) 1i);
// pthread will execute
// "child" function

NULL stack address specifies
a new stack "anywhere"

= Emmm—
An Example (V) %

i++; // now i == 1

while (count[i] < 12) {
printf("Parent count: %d\n", ++count[i]);
sleep(1l); // one second delay

} // while loop
return 0;

} // main

= Emmm—
Understanding pthread create()

m pthread_create() has four arguments

[&tid
= Placeholder for thread_id

T NULL

m Stack address of new stack
= NULL means can be put “anywhere”

1 start _function
= Void pointer to a function
1 (void *) arg
= Sole argument passed to start_function

= Emmm—
Comparing the approaches

Feature Kernel User-level
threads threads

Portability

Multiprocessing

Performance

Ease of use

=
Which approach is the most portable?

Feature Kernel User-level
threads threads

Portability V1

Multiprocessing

Overhead

Ease of use

= Emmm—
Which approach handles best multicores?

Feature Kernel User-level
threads threads

Portability V1

Multiprocessing

Overhead

Ease of use

= Emmm—
Which approach has the lowest overhead

Feature Kernel User-level
threads threads

Portability V1

Multiprocessing

Overhead V]

Ease of use

= Emmm—

Which approach is easier to use?

Feature Kernel User-level
threads threads

Portability V1

Multiprocessing

Overhead V]

Ease of use

= Emmm—
Conclusion

m No clear winner between kernel-supported and user-level threads

m Solaris (from Sun, now taken over by Oracle)
1 Supports both user-level threads and kernel threads
1 Lets programmers combine them as they need

