
Chapter II
Processes

Jehan-François Pâris
jfparis@uh.edu

Chapter Overview

 Processes

 States of a process

 Operations on processes
 fork(), exec(), kill(), signal()

 Threads and lightweight processes
 POSIX threads

Processes

Definition

 A process is a program executing a given sequential
computation.
 An active entity unlike a program
 Think of the difference between a recipe in a cookbook and

the activity of a cook preparing a dish according to the recipe!

Processes and programs (I)

 Can have one program and many processes

When several users execute the same program (text editor,
compiler, and so forth) at the same time, each execution of the
program constitutes a separate process

 A program that forks another sequential computation gives
birth to a new process.

Examples

 Several executions of same program

 A program forking a child

a.out

gcc gcc gcc

a.out

Processes and programs (II)

 Can have one process and two—or more—programs
 A process that performs an exec() call replaces the program

it was executing

Examples

 One process executing two programs
 Typical of Unix/Linux processes

shell

ls

The UNIX shell

 Program that
Reads input from the keyboard
Creates the process that will execute the command.
Wait for the completion of the process it has created unless it

was specified otherwise
 User-level program that you and I could write

Yes, we can
#! /usr/bin/python3
""" A very very basic shell in Python 3

Check https://www.python‐course.eu/forking.php
"""
import os
def changeDirectory(argc, argv) :

if argc == 2 :
try :

os.chdir(argv[1])
except Exception :

print("BasicShell: " + argv[0] +
": no such file or directory")

elif argc == 1 :
os.chdir(os.environ['HOME'])

else :
print(BasicShell: cd: too many arguments")

def vanillaCase(argc, argv) :
kidpid = os.fork()
if kidpid == 0 :

try :
os.execvp(argv[0], argv)

except Exception :
print(argv[0]+": program not found")

else :
os.wait()

while (1) :
argline = input("BasicShell: ")
argline.strip()
argv = argline.split() # break at spaces
argc = len(argv)
if argc == 0 :

continue
if argv[0] == 'exit' :

Exiting BasicShell
break

elif argv[0] == 'cd':
Changing current directory
changeDirectory(argc, argv)

else :
vanillaCase(argc, argv)

A very basic UNIX shell

 for (;;) {
parse_input_line(arg_vector);
if built_in_command(arg_vector[0]) {

do_it(arg_vector);
continue;

} // built‐in command
pathname = find_path(arg_vector[0]);
create_process(pathname, arg_vector);
if (interactive())

wait_for_this_child();
} // for loop

Notes

 All functions in italics are templates yet to be written

 Real shells do more:
 I/O redirection
 Pipes (as in ls -alg | more)
 Command aliasing,
 Wildcard characters (as” *”)
 …

Importance of processes

 Processes are the basic entities managed by the operating
system

 OS provides to each process the illusion it has the whole
machine for itself

 Each process has a dedicated address space

The process address space

 Set of main memory locations allocated to the process
 Other processes cannot access them
 Process cannot access address spaces of other processes

 A process address space is the playpen or the sandbox of its
owner

A last word

 There are many quasi-synonyms for process:
 Job (very old programmers still use it)
 Task
 Program (strongly deprecated)

Process states

The five basic process states

 Processes go repeatedly through several stages during their
execution
 Waiting to get into main memory
 Waiting for the CPU
 Running
 Waiting for the completion of a system call

The big diagram

Running Terminated

New Ready Blocked

Admit process Completion

Interrupt
Get CPU

Exit

System request

This is fundamental material

Process arrival

 New process
 Starts in NEW state
 Gets allocated a Process Control Block (PCB) and

main memory
 Is put in the READY state waiting for CPU time

The ready state

 AKA the ready queue
 Contains all processes waiting for the CPU
 Organized as a priority queue
 Processes leave the priority queue when they get some CPU

time
 Move then to the RUNNING state

The running state (I)

 A process in the running state has exclusive use of the CPU until
 It terminates and goes to the TERMINATED state
 It does a system call and goes to the BLOCKED state
 It is interrupted and returns to the READY state

The running state (II)

 Processes are forced to relinquish the CPU and return to the
READY state when

 A higher-priority process arrives in the ready queue and
preempts the running process
 Get out, I’m more urgent than you!

 A timer interrupt indicates that the process has exceeded its
time slice of CPU time

The blocked state (I)

 Contains all processes waiting for the completion of a system
request:
 I/O operation
 Any other system call

 Process is said to be
 blocked (Arpaci-Dusseau & Arpaci-Dusseau)
 waiting
 sleeping (UNIX)

The blocked state (II)

 A system call that does not require callers to wait until its
completion is said to be non-blocking
 Calling processes are immediately returned to the READY

state

 The blocked state is organized as a set of queues
 One queue per device, OS resource

The process control block (I)
 Contains all the information associated with a specific process:
 Process identification (pid), argument vector, ...

 UNIX pids are unique integers
 Process state (new, ready, running, …),
 CPU scheduling information

 Process priority, processors on which the process can run,
...,

The process control block (II)

 Program counter and other CPU registers
 Including the Program Status Word (PSW),

 Memory management information
 Very system specific,

 Accounting information
 CPU time used, system time used, ...

 I/O status information
 List of opened files, allocated devices, …

The process table

 System-wide table containing
 Process identification (pid), argument vector, ...
 Process current state
 Process priority and other

CPU scheduling information
 A pointer to the remaining information.

Swapping

 Whenever the system is very loaded, we might want to expel from
main memory or swap out
 Low priority processes
 Processes that have been waiting for a long time for an

external event
 User is out of the office

 These processes are said to be swapped out or suspended.

How it works
Running Terminated

New Ready Blocked
Admit process

Completion

Interrupt

Get CPU

Exit

System request

Suspended
Ready

Suspended
Blocked

Activate Deactivate
Deactivate

Completion

Suspended processes

 Suspended processes
 Do not reside in main memory
 Continue to be included in the process table

 Can distinguish between two types of suspended processes:
 Waiting for the completion of some request

(blocked_suspended)
 Ready to run (ready_suspended).

A warning

 A system should not swap out ready processes unless their
priority is very low

 Otherwise swapping out ready processes can only be a
desperate measure

Operations on processes
Process creation, deletion, …

Operations on processes

 Process creation
 fork()
 exec()
 The argument vector

 Process deletion
 kill()
 signal()

Process creation

 Two basic system calls

 fork() creates a carbon-copy of calling process sharing its
opened files

 execv() overwrites the contents of the process address space
with the contents of an executable file

fork() (I)

 First process of a system is created when the system is booted

 All other processes are forked by another process
 Their parent process
 Said to be children of that process

fork() (II)

 When a process forks, OS creates an identical copy of forking
process with
 A new address space
 A new PCB

 The only resources shared by the parent and the child process
are the opened files

fork() (III)

fork()
fork()

Parent:
fork()
returns
PID of
child

Child:
fork()
returns 0

opened files

First example

 #include <iostream>
using namespace std;
main() {

fork();
cout << "Hello" << endl;

} // main

will print two lines as cout will be executed by both the parent
and the child

How it works

…
fork();
cout …;
…

…
fork();
cout …;
…

Second example

main() {
fork();
fork();
cout << "Hello" << endl;

} // main

will print four lines as cout will be executed by the parent, its two
children and its grandchild

How it works
…
F
F
C
…

…
F
F
C
…

…
F
F
C
…

…
F
F
C
…

Something smarter

int pid;
pid = fork();
if (pid == 0) {

// child process
...

} else {
// parent process
...

}

First simplification

int pid;
pid = fork();
if (pid == 0) {

// child process
...
_exit(0); // normal exit

} // if
// parent process continues

...

Second simplification

int pid;
if ((pid = fork()) == 0) {

// child process
...
_exit(0); // normal exit

} // if
// parent process continues

...

Waiting for child completion

 wait(0)
 Waits for the completion of any child
 No wait if any child has already completed

 while (wait(0) != kidpid)
 Waits for the completion of a specific child identified by its pid

An example (I)

 #include <iostream>
#include <sys/types.h>
#include <sys/wait.h>
using namespace std;

An example (II)

 main() {
int pid;
if((pid = fork()) == 0) {

cout << "Hello !" << endl;
_exit(0);

} // child
wait(0);
cout << "Goodbye!" << endl;

} // main

Notes

 UNIX keeps in its process table all processes that have
terminated but their parents have not yet waited for their
termination
 They are called zombie processes

 The statement

while (kidpid != wait(0));

is a loop with an empty body

Putting everything together

int kidpid;
if ((kidpid = fork()) == 0) {

// child process
...
_exit(0); // normal exit

} // if
// parent waits for child
while (wait(0) != kidpid);

...

Must use the while
loop if the process
has already forked
other children

exec

 Whole set of exec() system calls
 Most interesting are
 execv(pathname, argv)
 execve(pathname, argv, envp)
 execvp(filename, argv)

 All exec() calls perform the same two tasks
 Erase current address space of process
 Load specified executable

execv

 execv(pathname, argv)
 char pathname[]

 full pathname of file to be loaded:
/bin/ls instead of ls

 char argv[][]
 the argument vector:

passed to the program to be loaded

Argument vector (I)

 An array of pointers to the individual argument strings

 arg_vector[0] contains the name of the program
as it appears in the command line

 Other entries are parameters

 End of the array is indicated by a NULL pointer

Argument vector (II)

 char argv[][];
 char **argv;

argv argv[0]

argv[1]

NULL

“ls”

“-alg”

execve() and execvp()

 execve(pathname, argv, envp)
 Third argument points to a list of

environment variables

 execvp(argv[0], argv)
 Lets user specify a command name instead of a full pathname
 Looks for argv[0] in list of directories specified in environment

variable PATH

Putting everything together

int pid
if ((pid = fork()) == 0) {

// child process
...
execvp(filename, argv);
_exit(1); // exec failed

} // if
while (pid != wait(0));
// parent waits
...

Observations (I)

 Not cheap
 fork() makes a complete copy

of parent address space
 Very costly in a virtual memory system

 exec() thrashes that address space

 Best solution is copy-on-write (COW)

When either of them modifies a page,
other gets its own copy of original page

Copy-on-write
Parent and child share same address space

COW of original page

Copy-on-write as a lazy approach

 Copy-on-write postpones address space copying until it is actually
needed
 Do the strict minimum

 Lazy approach
 Betting that very little copying will be actually needed

 An execv() will quickly follow

 Opposite is eager approach

Observations (II)

 Neither fork()nor exec()affect opened file descriptors
 They remain unchanged

 Important for UNIX I/O redirection mechanism

How this happened

 Fork was not that expensive on a minicomputer with a 16-bit
address space
 Never had to copy more than 64KB

 Using a fork/exec allowed a very easy implementation of I/O
redirection
 After the fork() thus in the child
 Before the exec() while parent is still in control

A very basic shell (I)

for (;;) {
parse_input_line(argv);
if built_in(argv[0]) {

do_it(arg_vector);
continue;

} //built_in command
path = find_path(argv[0]);

A very basic shell (II)

if ((pid = fork()) == 0) {
// put here I/O
// redirection code
execv(path, argv);
_exit(1); // execv failed

} //child process
if (interactive())

while (wait(0) != pid);
} // main for loop

Comments

 Shell built-in commands include
 exit

terminates the shell
 cd

changes current directory

 Commands are assumed to be interactive
 Non-interactive commands end with an “&”

Terminating a process (I)

 Sending a signal:
 kill() has two arguments

 The process id of the receiving process
 A signal name or a signal number

 #include <signal.h>
kill(this_pid, this_signal);

 Process receiving the signal will terminate

Terminating a process (II)

Process P

Process M

kill(M_pid, SIGINT);

What should I do? AARGH!

Catching a signal (I)

 The process receiving signal can catch it by using signal()
 Will not terminate

 signal(a_signal, catch_it);
 where catch_it points to a function that will be called

whenever signal a_signal signal is received.
 The ninth signal, SIGKIL, cannot be caught.

Process M

Catching a signal (II)

kill(M_pid, SIGINT);

Process is now shielded by signal() call

Process P

Lightweight processes/threads
Kernel supported threads, user-level threads, POSIX threads (pthreads)

Limitations of processes

 Single threaded server:
 Processes one request at a time

for (;;) {
receive(&client, request);
process_request(...);
send(client, reply);

} // for

A basic question

 What does a server do when it does not process client
requests?

Three good answers

 Nothing

 It waits for client requests

 It “sleeps”
 Blocked state is sometimes called the sleep state

The problem

 Most client requests involve disk accesses
 File servers
 Authentications servers

 When this happens, the server remains in the BLOCKED state
 Cannot handle other customers’ requests

 Could end doing nothing most of the time

 Poor throughput (and long delays)

An analogy

 In most fast-food restaurants, counter employees process
customer orders one order at a time.

 Not be possible in a traditional restaurant
 A server that would only be able to wait on one table at a time

would be idle most of the time.

A first solution

int pid;
for (;;) {

receive(&client, request);
if ((pid = fork())== 0) {

process_request(...);
send(client, reply);
_exit(0); // done

} // if
} // for

The good and the bad news

 The good news:
 Server can now handle several user requests in parallel

 The bad news:
 fork() is a very expensive system call

 Has to create a new address space

A better solution

 Provide a faster mechanism for creating cheaper processes:

 Lightweight processes

 Threads

How?

 Lightweight processes and threads share the address space of
their parent

 No need to create a new address space
 Most expensive step of fork() system call

Is it not dangerous?

 To some extent because
 No memory protection inside an address space
 Lightweight processes can now interfere with each other

 But
 All lightweight process code is written by the same team

General Concept (I)

 A thread or lightweight process
 Does not have its own address space
 Shares it with its parent and other peer threads in the same

address space (task)

 Each thread has a program counter, a set of registers and its
own stack.
 Everything else is shared

General Concept (II)

 A regular process
(single-threaded)

 A process containing
several threads

Implementation

 Threads and LWPs can either be
 Kernel supported:

 Mach, Linux, Windows NT and after
 User-level:

 Pthread library, …

Kernel-Supported Threads (I)

 Managed by the kernel through system calls

 One process table entry per thread

 This is the best solution for multiprocessor architectures
 Kernel can allocate several processors to a single

multithreaded task

Kernel-Supported Threads (II)

 Supported by Mach, Linux, Windows NT and more recent systems

 Performance Issue:
 Switching between two threads in the same task involves a

system call
 Results in two context switches

Linux Threads

 clone (fn, stack, flags)
where
 fn specifies function to be executed by new thread or process
 stack points to the stack it will use
 flags is a set of flags specifying various options

 CLONE_VM for threads
 Regular process if CLONE_VM is missing

FYI

User-Level Threads (I)

 User-level threads are managed by procedures within the task
address space
 The thread library

 One process table entry per task/address space
 Kernel is not even aware that process is multithreaded

User-Level Threads (II)

 Can be retrofitted into an OS lacking thread support
 Portable thread libraries

 No performance penalty:
 Switching between two threads of the same task is done

cheaply within the task
 Same cost as a procedure call

User-Level Threads (III)

 Programming issue:
 Each time a thread does a blocking system call, kernel will

move the whole process to the blocked state
 It does not know better

 Must then use non-blocking system calls
 Complicates programmer’s task

User-Level Threads (IV)

sleep(5);

Kernel
Process wants to sleep for 5 seconds:
Should be moved it to the blocked state

POSIX Threads

 POSIX threads, or pthreads, started as pure user-level threads
managed by the POSIX thread library
 Gained later some kernel support

 Ported to various Unix and Windows systems (Pthreads-win32).
 Function names start with pthread_
 Calls tend to have a complex syntax

An Example (I)

#include <pthread.h>
static int count[2];

Static variables are shared by all threads

Other variables are stored on the private
stack of each thread.

FYI

An Example (II)

void *child(void *arg) {
int index;
index = (int) arg; // required
for(;;) {

printf("Child count: %d\n",
++count[index]);

sleep(1); // one second delay
} // for loop

} // child

FYI

An Example (III)

int main() {
thread_t tid; // thread id
int i = 0;
pthread_create(&tid, NULL,

child, (void *) i);
// pthread will execute
// "child" function

NULL stack address specifies
a new stack "anywhere"

FYI

An Example (IV)

i++; // now i == 1
while (count[i] < 12) {

printf("Parent count: %d\n", ++count[i]);
sleep(1); // one second delay

} // while loop
return 0;

} // main

FYI

Understanding pthread_create()

 pthread_create() has four arguments
 &tid

 Placeholder for thread_id
 NULL

 Stack address of new stack
 NULL means can be put “anywhere”

 start_function
 Void pointer to a function

 (void *) arg
 Sole argument passed to start_function

FYI

Comparing the approaches

Feature Kernel
threads

User-level
threads

Portability

Multiprocessing

Performance

Ease of use

Comparing the approaches

Feature Kernel
threads

User-level
threads

Portability

Multiprocessing

Overhead

Ease of use

Comparing the approaches

Feature Kernel
threads

User-level
threads

Portability

Multiprocessing

Overhead

Ease of use

Comparing the approaches

Feature Kernel
threads

User-level
threads

Portability

Multiprocessing

Overhead

Ease of use

Comparing the approaches

Feature Kernel
threads

User-level
threads

Portability

Multiprocessing

Overhead

Ease of use

Conclusion

 No clear winner between kernel-supported and user-level threads

 Solaris (from Sun, now taken over by Oracle)
 Supports both user-level threads and kernel threads
 Lets programmers combine them as they need

