CHAPTER III

SCHEDULING

Jehan-Francois Paris
jfparis@uh.edu

g
Chapter overview

m The problem

= Non-preemptive policies:
OFCFS, SJF

= Preemptive policies:

[1Round robin, multilevel queues with feedback,
guaranteed scheduling

O Examples: UNIX, Linux, Windows NT and after

'_—
The scheduler

m Part of the OS that decides how to allocate the processor
cores and the main memory to processes

m Will focus here on the CPU scheduler
1 Decides which ready process should get a processor core
1 Also called short-term scheduler

g
Objectives

m A good scheduler should

COMinimize user response times of all interactive processes
= Major objective today

1 Maximize system throughput
1 Be fair
1 Avoid starvation

'_—
What is starvation?

m Starvation happens whenever some ready processes never get
core time

1 Typical of schedulers using priorities
= Lowest-priority processes keep getting set aside

® Remedy is to increase the priorities of processes that have
waited too long

'__
Fairness

m Ensuring fairness is more difficult than avoiding starvation

1 If I give freshly-baked cookies to half of my nephews and stale
bread to the others, | am not fair but | still ensure that nobody
starves

Non-preemptive schedulers

g
Non-preemptive schedulers

= A non-preemptive CPU scheduler will never remove a core from
a running process

= Will wait until the process releases the core because
1 It issues a system call
1 It terminates

= Now obsolete

g
Examples (1)

m First-Come First-Served (FCFS):

1 Simplest and easiest to implement
s Uses a FIFO queue

1 Seems a good idea but

= Processes requiring a few milliseconds of core time have to
wait behind processes that make much bigger demands

= Inacceptable

- mmm—
Examples (ll)

m Shortest Job First (SJF):

1 Gives a core to the process requesting the least amount of
core time

= Will reduce average wait

= Must know ahead of time how much core time each process
needs

CINot possible
= Still lets processes monopolize a core

'_—
How SJF works

m Five students wait for their instructor at the beginning of
her office hours

1 Ann needs 20 minutes of her time
1 Bob needs 30 minutes

1 Carol needs 10 minutes

1 Dean needs 5 minutes

1 Emily needs 5 minutes

g

FCFS schedule
Student Time Wait
Ann 20 0
Bob 30 20
Carol 10 50
Dean 5 60
Emily 5 65

= S
The outcome

= Average wait time:
1(0 + 20 + 50 + 60 + 65)/5 = 39 minutes

g

SJF schedule
Student Time Wait
Dean 5 0
Emily 5 5
Carol 10 10
Ann 20 20
Bob 30 40

- aEmmmm——
The SJF outcome

m Average wait time:
0 (0+5+ 10+ 20 + 40)/5 = 15 minutes

m Less than half the wait time of the FCFS schedule
1 The data were rigged

Preemptive schedulers

g
Preemptive Schedulers

m A preemptive scheduler can return a running process to the

ready queue whenever another process requires that core in a
more urgent fashion

1 Has been for too long in the ready queue
1 Has higher priority

m Sole acceptable solution
1 Prevents processes from “hogging” a core

'_—
Types of preemptive schedulers

= Preemptive schedulers w/o priorities:
C1All processes have the same priority
1Ready queue is FIFO

m Preemptive schedulers with priorities:
1Use multiple queues
C1Differ in the way they adjust process priorities

gie
Round robin ()

m Assumes all processes have same priority
1Guaranteed to be starvation-free

m Similar to FCFS but processes only get a core for up to T.p, time
units

1 Time slice or time quantum

m Processes that exceed their time slice return to the end of the
ready queue

= SEE——
Round robin (I1)

Process exceeds
time slice

e

Ready queue

System request completion System call

- mmm—
How RR works

m Assume
13Single core
1 Time slice is 100ms (reasonable choice)
[1Ready queue contains processes A, B and C
m Agets core att=0ms
m Areleases the core at t = 24ms to do an |/O
m B getscoreatt=24ms
m Areturns to ready queue at f = 24ms
m B forced to release the core at t = 124ms

- mmm—
Finding the right time slice (l)

m A small time slice means a good response time
1 No process will ever have to wait more than

(n + 1T py time units

readyQueue

where n,...4,0ueue 1S the number of processes already in the

ready queue

m Alarge time slice means a better throughput
1 Fewer context switches

= SEE———
Finding the right time slice (ll)

|deal CPU schedule

True CPU schedule

- mmm—
The problem

= Want to adjust the time slice to guarantee a maximum waiting
time in the ready queue

TCPU = Tmax/ (nready_queue + 1)
1 Works well as long as system is lightly loaded

1 Produces very small time slices when system is loaded
= Too much context switch overhead!

'__
An observation

m The throughput of a system using a RR scheduler actually
decreases when its workload exceeds some threshold

1Rare among physical systems

1 Frequent among systems experiencing congestion

= Freeway throughput actually decreases when its load
exceeds some threshold

Multi-level schedulers

g
The solution (1)

m Add priorities

m Distinguish among
(1 Interactive processes

1 I/O-bound processes
= Require small amounts of core time

1 CPU-bound processes
= Require large amounts of core time (number crunching)

g
The solution (II)

m Assign
C1High priorities to interactive processes
1 Medium priorities to |/O-bound processes
1 Low priorities to CPU-bound processes

g
The solution (l1)

m Assign
C1Smallest time slices to interactive processes
1 Medium time slices to I/O-bound processes
C1Biggest time slices to CPU-bound processes

m Allow higher priority processes to steal cores from lower priority
processes

'__
The result

m Interactive processes will get good response times

m CPU-bound processes will get the CPU
1Less frequently than with RR
1For longer periods of time
1Less context switch overhead

g
Two problems

= How to assign priorities to processes?
1 Process behaviors may change during their execution
» Should adjust process priorities

= How to avoid starvation?
m Adjust process priorities

'__
Multi-Level with Feedback Queues

m Use dynamic priorities

= Reward
[1Processes that issue system calls
[1Processes that interact with user
[1Processes that have been a long time in the ready queue

m Penalize
1Processes that exceed their time slice

= S

Implementation (I)

High priority queue

N

—

Low priority queue / System
call

Medium priority queue

- aEmmm——
Implementation (II)

m [ime slice increase when priority decreases, say
1 T for high priority processes
1 2T for medium priority processes
14T for low priority processes

- aEmmm——
The priority game

m Different systems have different conventions for priorities
1 0 Is highest
= Most UNIX systems, Linux

10 is lowest
= UNIX System V Release 4 (V.4)
= Windows NT and after

g
System V.4 scheduler

m Three process classes:
1 Real-time
1 Time-sharing
1 System (for kernel processes)

m Each process class has its own priority levels
1 Real-time processes have highest priority
1 Time-sharing lowest

g
Real-time processes

= Have fixed priorities
1 As in Windows scheduler

m System administrator can define

1 A different quantum size (rt_quantum)
for each priority level

gie
Timesharing processes ()

m Have variable priorities

m System administrator can specify the parameters of each priority
level
1 Maximum flexibility
1 Maximum risk of making a bad choice

1 Leaving too many tuning options for the system
administrator increases the chances that some
options will be poorly selected.

g
Timesharing processes (ll)

m Parameters include

0 Quantum size (ts_quantum)

1 New priority for processes that use their whole CPU quantum
(ts_tqexp)

1 New priority for processes returning from blocking state
(ts_slpret)

gie
Timesharing processes (lll)

1 Maximum amount of time a process can remain in the ready
queue without having its priority recomputed (ts_maxwait)

1 New priority for processes that have been in the ready queue
for ts_maxwait (ts_lwait)

- aEmmmm——

Example
#ts _quantum ts_tqgexp ts slpret ts maxwait ts_lwait LEVEL
1000 %) 1 50000 1 # O
500 %) 2 20000 2 # 1
200 1 3 10000 3 # 2
100 2 3 10000 3 # 3

m System has four priority levels
10 is the lowest
13 is the highest
= Anything after a pound sign (#) is a comment

'__
How to read it

#ts _quantum ts_tqgexp ts slpret ts maxwait ts_lwait LEVEL

1000 %) 1 50000 1 # O
500 %) 2 20000 2 # 1
200 1 3 10000 3 # 2
100 2 3 10000 3 # 3

= New priorities should
[1Reward small CPU users: ts_slpret and ts lwait

[1Penalize large CPU users: ts_tqexp

- mmm—
How?

m We increase the priority of processes that
1 Have completed a system call
= They might become less CPU-bound

1 Have waited a long time in the ready queue
= To prevent starvation

= We decrease the priority of processes that
1 Have exhausted their time quantum
= They might be more CPU-bound

g
Second example ()

#ts _quantum ts_tqgexp ts slpret ts maxwait ts_lwait LEVEL

1000 %) 1 50000 1 # O
500 X 2 20000 2 # 1
200 1 3 10000 3 # 2
100 2 Y 10000 4 # 3
100 3 4 10000 Z # 4

m Table now defines five priority levels

m What are the correct values for X, Y and Z?

g
Second example (Il)

#ts _quantum ts_tqgexp ts slpret ts maxwait ts_lwait LEVEL

1000 0 1 50000 1 # 0
500 0 2 20000 2 # 1
200 1 3 10000 3 # 2
100 2 Y 10000 4 # 3
100 3 4 10000 Z # 4

m X is the new priority for processes at level 1 that exceed their time
quantum

1 Must be lower than their current priority, so X =0

g
Second example (llI)

#ts _quantum ts_tqgexp ts slpret ts maxwait ts lwait LEVEL

1000 © 1 50000 1 # 0
500 0 2 20000 2 # 1
200 1 3 10000 3 # 2
100 2 4 10000 4 # 3
100 3 4 10000 Z # 4

m Y is the new priority for processes at level 3 that exceed their time
quantum

[Must be higher than their current priority, so Y = 4

g
Second example (V)

#ts _quantum ts_tqgexp ts slpret ts maxwait ts_lwait LEVEL

1000 0 1 50000 1 # 0
500 0 2 20000 2 # 1
200 1 3 10000 3 # 2
100 2 4 10000 4 # 3
100 3 4 10000 4 # 4

m Zis a the new priority for processes at level 4 that have waited too
long in the ready queue

[1Should be higher than current priority
JLevel 4 already is the highest priority, so Z=4

g
Second example (V)

#ts _quantum ts_tqgexp ts slpret ts maxwait ts_lwait LEVEL

1000 0 1 50000 1 # 0
500 0 2 20000 2 # 1
200 1 3 10000 3 # 2
100 2 4 10000 4 # 3
100 3 4 10000 4 # 4

= Recall that
1ts_slpret and ts_lwait reward small CPU users

1 ts_tqgexp penalizes large CPU users

A last exercise

#ts _quantum ts_tqgexp ts slpret ts maxwait ts_lwait LEVEL

1000 X 1 50000 1 # O
500 Y 2 20000 2 # 1
200 1 3 10000 3 # 2
100 2 Z 10000 \' # 3
100 3 U 10000 W # 4

m Fill the missing values

The six missing values

#ts _quantum ts_tqgexp ts slpret ts maxwait ts_lwait LEVEL

1000 0 1 50000 1 # 0
500 0 2 20000 2 # 1
200 1 3 10000 3 # 2
100 2 4 10000 4 # 3
100 3 4 10000 4 # 4

m Recall that the only valid priorities are 0 to 4!

g
MacOS X Scheduler (1)

m Mac OS X uses a multilevel feedback queue
[1Manages threads, not processes

C1Four priority bands for threads
= Normal
= System high priority
= Kernel mode only
= Real-time

g
MacOS Scheduler (I1)

m Thread priorities will vary
1Must remain within their bands

1Real-time threads tell the scheduler the number A of clock
cycles they will need out of the next B clock cycles

= Say 4000 out of the next 9000 clock cycles

'_—
Windows Scheduler

= An update of the old VMS scheduler

m Scheduler manages threads rather than processes.

m Has 32 priority levels:
116 to 31 for real-time threads
10 to 15 for other threads

m Priority zero reserved for the system thread zeroing free pages

gie
Priority classes

m Apply to processes

m Five classes of process priorities
O IDLE_PRIORITY_CLASS
0 BELOW _NORMAL PRIORITY CLASS
0 NORMAL_PRIORITY_CLASS
0 ABOVE_NORMAL_PRIORITY_CLASS
0 HIGH_PRIORITY_CLASS
00 REALTIME_PRIORITY_CLASS

e
Base priorities

= Apply to threads

m Defined within each process class
O THREAD PRIORITY_IDLE
O THREAD PRIORITY _LOWEST
O THREAD PRIORITY_BELOW NORMAL
O THREAD PRIORITY_NORMAL
O THREAD PRIORITY_ABOVE_NORMAL
O THREAD PRIORITY_HIGHEST
O THREAD PRIORITY_TIME_CRITICAL

'_—
Real-time threads

m Real-time processes belong to REALTIME_PRIORITY_ _CLASS
m Threads at fixed priorities between 16 and 31

[1Specified by their base priority
m Scheduling is round-robin within each priority level

g
Other threads ()

m Run at variable priorities between 1 and 15
m Each thread has a base priority

1 Value depends on process class and thread priority level
within class

= 1 for all threads with THREAD_PRIORITY_IDLE

= 15 for all threads with
THREAD PRIORITY_TIME_CRITICAL

g
Other threads (ll)

m Thread priorities never go below their base priority

m These priorities are
1 "Boosted” whenever they return from the blocked state
1 Decremented when they exhaust their time slice

-
Thread affinity

m Thread affinity specifies the set of processors on which the
thread can run.

[1"Setting thread affinity should generally be avoided because it
can interfere with the scheduler's ability to schedule threads
effectively across processors."

= https://msdn.microsoft.com/en-
us/library/windows/desktop/ms684251(v=vs.85).aspx

g
Thread ideal processor

m Instructs the scheduler to run the thread on that processor
whenever possible

[1Does not guarantee that processor will always be chosen

'__
Note

= Do not be confused by the two different usages of "suspended”
1 Suspending a process is the same as swapping it out

1 Suspending a thread in this context means moving it to the
blocked state

gie
Guaranteed scheduling

m Class of scheduling algorithms that want to ensure that its
process has its fair share of CPU time

m Penalize processes that have used a large amount of CPU time
[1Penalty fades away over time

m Most versions of UNIX, Windows NT and after, Linux

- mmm—
Old UNIX Scheduler (1)

m Priorities take into account past CPU usage

p_usrpri = PUSER+p_cpu/2+p_nice

where

1 PUSER is the user's base priority

0 p_cpu its current CPU usage

1 p_nice a user-settable parameter

DO NOT
MEMORIZE
THIS

] DO NOT
Old UNIX Scheduler (l) MEMORIZE

THIS

®m p_cpu is updated every second according to a decay function
decay(p_cpu) = p_cpu/2
m After k seconds, penalty is decreased by a factor 1/2%

e
DO NOT

BSD scheduler (l) MEMORIZE

THIS

m The time quantum is 100 milliseconds
p_usrpri = PUSER + p cpu/4 + 2Xp_nice
®m p_cpu is updated every second according to:
p cpu = (2x1d)/(2x1d+1)Xp _cpu + p_nice

= where 1d is a sampled average of the length of the run queue
over the last minute

g
BSD scheduler (l)

m Unlike the old UNIX scheduler, the BSD scheduler takes into
account the system load

1 Through length of ready queue
= "Load average”

1 Forgives old CPU usage more slowly when system load is
high

- mmm—
Linux 2.4 scheduler ()

m Partitions the CPU time into epochs.

m At the beginning of each epoch, each process is assigned a time
quantum
1 Specifies the maximum CPU time the process can have during
that epoch.

m Processes that exhaust their time quantum cannot get CPU time
until the next epoch starts

- mmm—
Linux 2.4 scheduler (Il)

m Processes that release the CPU before their time quantum is
exhausted can get more CPU time during the same epoch.

m Epoch ends when all ready processes have exhausted their time
gquanta.

m Priority of a process is the sum of its base priority plus the amount
of CPU time left to the process before its quantum expires.

- NOT COVERED
Stride scheduling (1) THIS SEMESTER

m Deterministic fair-share scheduler
m Start by allocating tickets to processes/threads
1More tickets mean more core time
m Each thread has a stride
= Inversely proportional to the number n of tickets it has

m If thread A has 10 tickets, thread B has 5 tickets and thread
C has 20 tickets

0Stride of Ais 10, stride of B is 20 and stride of Cis 5

gie
Stride scheduling (I1)

m Each process has a pass value
Clnitially set to process stride

m Each time a process releases the CPU

NOT COVERED
THIS SEMESTER

1Scheduler selects process with lowest pass

1Gives it the CPU for a fixed time slide

m Each time a process gets the CPU

[1Scheduler adds the process stride to its pass value

] NOT COVERED
The key Idea THIS SEMESTER

m Use epochs

= Have a thread priority ("pass”)
Clnitially set to "stride”
= Inversely proportional to the number of tickets allocated to

m Always schedule thread with lowest pass
m Penalize differently past core usage

- NOT COVERED
Stride scheduling (1) THIS SEMESTER

m Scheme is starvation free

1 Processes that do not get any CPU time keep their original
pass values

1 Other processes will see their pass values increase

= S

NOT COVERED
THIS SEMESTER

Detalled example

Round Thread A Thread B Thread C Scheduler
pass values: | pass values: | pass values will pick
10 tickets 5 tickets 25 tickets: thread
stride is 10 stride is 20 stride is 4

g
Explanations

m Process C gets first slot

1 Lowest pass value (4)

m Process C gets second slot
1 Lowest pass value (8)

m Process A gets third slot

1 Lowest pass value (”

m Process C gets fourth s
1 Lowest pass value (”

0)
ot
2)

NOT COVERED
THIS SEMESTER

g
Handiing ties oy S

m Whenever two threads have the same pass value, the scheduler
will pick the thread with the lowest stride

'__
FreeBSD 5.0 ULE scheduler

m Designed for threads running on multicore architectures

1For more details
http://www.informit.com/articles/article.aspx?p=2249436&seqgNum=4

m [wo parts
1Low-level scheduler
= Runs every time a core is released
[1High-level scheduler
= Runs every second

http://www.informit.com/articles/article.aspx?p=2249436&seqNum=4

'__
Low-level scheduler

m Kernel maintains a set of run queues for each CPU
COWith different priorities

m Low-level scheduler selects first thread on highest-level non-
empty run queue

g
High-level scheduler

m Reevaluates thread priorities
[1Real-time threads have fixed priorities

1Scheduler detects interactive threads based on their
interactivity score:

Sleep time

m Scaling factor X :
Run time

m Also assigns threads to CPUs
[1Complex process

'_—
Observations

m Low-level scheduler is kept simple
1 Quick decisions

m High-level scheduler uses a very clever method to detect
Interactive processes

(Voluntary)Sleep time

Run time

m Must still pick length of observation period
[1Short term v. long term behavior

