
CHAPTER III

SCHEDULING

Jehan-François Pâris

jfparis@uh.edu

Chapter overview

◼ The problem

◼ Non-preemptive policies:

FCFS, SJF

◼ Preemptive policies:

Round robin, multilevel queues with feedback,

guaranteed scheduling

Examples: UNIX, Linux, Windows NT and after

The scheduler

◼ Part of the OS that decides how to allocate the processor

cores and the main memory to processes

◼ Will focus here on the CPU scheduler

 Decides which ready process should get a processor core

 Also called short-term scheduler

Objectives

◼ A good scheduler should

Minimize user response times of all interactive processes

◼ Major objective today

 Maximize system throughput

 Be fair

 Avoid starvation

What is starvation?

◼ Starvation happens whenever some ready processes never get

core time

Typical of schedulers using priorities

◼ Lowest-priority processes keep getting set aside

◼ Remedy is to increase the priorities of processes that have

waited too long

Fairness

◼ Ensuring fairness is more difficult than avoiding starvation

 If I give freshly-baked cookies to half of my nephews and stale

bread to the others, I am not fair but I still ensure that nobody

starves

Non-preemptive schedulers

Non-preemptive schedulers

◼ A non-preemptive CPU scheduler will never remove a core from

a running process

◼ Will wait until the process releases the core because

 It issues a system call

 It terminates

◼ Now obsolete

Examples (I)

◼ First-Come First-Served (FCFS):

 Simplest and easiest to implement

◼ Uses a FIFO queue

 Seems a good idea but

◼ Processes requiring a few milliseconds of core time have to

wait behind processes that make much bigger demands

◼ Inacceptable

Examples (II)

◼ Shortest Job First (SJF):

 Gives a core to the process requesting the least amount of

core time

◼ Will reduce average wait

◼ Must know ahead of time how much core time each process

needs

Not possible

◼Still lets processes monopolize a core

How SJF works

◼ Five students wait for their instructor at the beginning of

her office hours

 Ann needs 20 minutes of her time

 Bob needs 30 minutes

 Carol needs 10 minutes

 Dean needs 5 minutes

 Emily needs 5 minutes

FCFS schedule

Student Time Wait

Ann 20 0

Bob 30 20

Carol 10 50

Dean 5 60

Emily 5 65

The outcome

◼ Average wait time:

(0 + 20 + 50 + 60 + 65)/5 = 39 minutes

SJF schedule

Student Time Wait

Dean 5 0

Emily 5 5

Carol 10 10

Ann 20 20

Bob 30 40

The SJF outcome

◼ Average wait time:

 (0 + 5 + 10 + 20 + 40)/5 = 15 minutes

◼ Less than half the wait time of the FCFS schedule

The data were rigged

Preemptive schedulers

Preemptive Schedulers

◼ A preemptive scheduler can return a running process to the

ready queue whenever another process requires that core in a

more urgent fashion

 Has been for too long in the ready queue

 Has higher priority

◼ Sole acceptable solution

 Prevents processes from “hogging” a core

Types of preemptive schedulers

◼ Preemptive schedulers w/o priorities:

All processes have the same priority

Ready queue is FIFO

◼ Preemptive schedulers with priorities:

Use multiple queues

Differ in the way they adjust process priorities

Round robin (I)

◼ Assumes all processes have same priority

Guaranteed to be starvation-free

◼ Similar to FCFS but processes only get a core for up to TCPU time

units

Time slice or time quantum

◼ Processes that exceed their time slice return to the end of the

ready queue

Round robin (II)

Ready queue

Core

System call

Process exceeds

time slice

System request completion

How RR works

◼ Assume

Single core

Time slice is 100ms (reasonable choice)

Ready queue contains processes A, B and C

◼ A gets core at t = 0ms

◼ A releases the core at t = 24ms to do an I/O

◼ B gets core at t = 24ms

◼ A returns to ready queue at t = 24ms

◼ B forced to release the core at t = 124ms

Finding the right time slice (I)

◼ A small time slice means a good response time

 No process will ever have to wait more than

(𝒏𝒓𝒆𝒂𝒅𝒚𝑸𝒖𝒆𝒖𝒆 + 1)𝑻𝑪𝑷𝑼 time units

where 𝒏𝒓𝒆𝒂𝒅𝒚𝑸𝒖𝒆𝒖𝒆 is the number of processes already in the

ready queue

◼ A large time slice means a better throughput

 Fewer context switches

Finding the right time slice (II)

Ideal CPU schedule

P0 P1 P2 P3 P4

True CPU schedule

P0 P2 P3CS CSP1 CS CS P4

The problem

◼ Want to adjust the time slice to guarantee a maximum waiting

time in the ready queue

𝑻𝑪𝑷𝑼 = 𝑻𝒎𝒂𝒙 / (𝒏𝒓𝒆𝒂𝒅𝒚_𝒒𝒖𝒆𝒖𝒆
+ 𝟏)

 Works well as long as system is lightly loaded

 Produces very small time slices when system is loaded

◼ Too much context switch overhead!

An observation

◼ The throughput of a system using a RR scheduler actually

decreases when its workload exceeds some threshold

Rare among physical systems

Frequent among systems experiencing congestion

◼Freeway throughput actually decreases when its load

exceeds some threshold

Multi-level schedulers

The solution (I)

◼ Add priorities

◼ Distinguish among

 Interactive processes

 I/O-bound processes

◼Require small amounts of core time

 CPU-bound processes

◼Require large amounts of core time (number crunching)

The solution (II)

◼ Assign

High priorities to interactive processes

Medium priorities to I/O-bound processes

Low priorities to CPU-bound processes

The solution (III)

◼ Assign

Smallest time slices to interactive processes

Medium time slices to I/O-bound processes

Biggest time slices to CPU-bound processes

◼ Allow higher priority processes to steal cores from lower priority

processes

The result

◼ Interactive processes will get good response times

◼ CPU-bound processes will get the CPU

Less frequently than with RR

For longer periods of time

Less context switch overhead

Two problems

◼ How to assign priorities to processes?

 Process behaviors may change during their execution

◼ Should adjust process priorities

◼ How to avoid starvation?

◼Adjust process priorities

Multi-Level with Feedback Queues

◼ Use dynamic priorities

◼ Reward

Processes that issue system calls

Processes that interact with user

Processes that have been a long time in the ready queue

◼ Penalize

Processes that exceed their time slice

Implementation (I)

High priority queue

Medium priority queue

Low priority queue System

call

CPU

Implementation (II)

◼ Time slice increase when priority decreases, say

 T for high priority processes

 2T for medium priority processes

 4T for low priority processes

The priority game

◼ Different systems have different conventions for priorities

 0 is highest

◼Most UNIX systems, Linux

0 is lowest

◼UNIX System V Release 4 (V.4)

◼Windows NT and after

System V.4 scheduler

◼ Three process classes:

 Real-time

 Time-sharing

 System (for kernel processes)

◼ Each process class has its own priority levels

 Real-time processes have highest priority

 Time-sharing lowest

Real-time processes

◼ Have fixed priorities

 As in Windows scheduler

◼ System administrator can define

 A different quantum size (rt_quantum)

for each priority level

Timesharing processes (I)

◼ Have variable priorities

◼ System administrator can specify the parameters of each priority

level

 Maximum flexibility

 Maximum risk of making a bad choice

 Leaving too many tuning options for the system

administrator increases the chances that some

options will be poorly selected.

Timesharing processes (II)

◼ Parameters include

 Quantum size (ts_quantum)

 New priority for processes that use their whole CPU quantum
(ts_tqexp)

 New priority for processes returning from blocking state

(ts_slpret)

Timesharing processes (III)

 Maximum amount of time a process can remain in the ready

queue without having its priority recomputed (ts_maxwait)

 New priority for processes that have been in the ready queue

for ts_maxwait (ts_lwait)

Example

#ts_quantum ts_tqexp ts_slpret ts_maxwait ts_lwait LEVEL
1000 0 1 50000 1 # 0
500 0 2 20000 2 # 1
200 1 3 10000 3 # 2
100 2 3 10000 3 # 3

◼ System has four priority levels

0 is the lowest

3 is the highest

◼ Anything after a pound sign (#) is a comment

How to read it

#ts_quantum ts_tqexp ts_slpret ts_maxwait ts_lwait LEVEL
1000 0 1 50000 1 # 0
500 0 2 20000 2 # 1
200 1 3 10000 3 # 2
100 2 3 10000 3 # 3

◼ New priorities should
Reward small CPU users: ts_slpret and ts_lwait

Penalize large CPU users: ts_tqexp

How?

◼ We increase the priority of processes that

 Have completed a system call

◼ They might become less CPU-bound

 Have waited a long time in the ready queue

◼ To prevent starvation

◼ We decrease the priority of processes that

 Have exhausted their time quantum

◼ They might be more CPU-bound

Second example (I)

#ts_quantum ts_tqexp ts_slpret ts_maxwait ts_lwait LEVEL
1000 0 1 50000 1 # 0
500 X 2 20000 2 # 1
200 1 3 10000 3 # 2
100 2 Y 10000 4 # 3
100 3 4 10000 Z # 4

◼ Table now defines five priority levels

◼ What are the correct values for X, Y and Z?

Second example (II)

#ts_quantum ts_tqexp ts_slpret ts_maxwait ts_lwait LEVEL
1000 0 1 50000 1 # 0
500 0 2 20000 2 # 1
200 1 3 10000 3 # 2
100 2 Y 10000 4 # 3
100 3 4 10000 Z # 4

◼ X is the new priority for processes at level 1 that exceed their time

quantum

 Must be lower than their current priority, so X = 0

Second example (III)

#ts_quantum ts_tqexp ts_slpret ts_maxwait ts_lwait LEVEL
1000 0 1 50000 1 # 0
500 0 2 20000 2 # 1
200 1 3 10000 3 # 2
100 2 4 10000 4 # 3
100 3 4 10000 Z # 4

◼ Y is the new priority for processes at level 3 that exceed their time

quantum

 Must be higher than their current priority, so Y = 4

Second example (IV)

#ts_quantum ts_tqexp ts_slpret ts_maxwait ts_lwait LEVEL
1000 0 1 50000 1 # 0
500 0 2 20000 2 # 1
200 1 3 10000 3 # 2
100 2 4 10000 4 # 3
100 3 4 10000 4 # 4

◼ Z is a the new priority for processes at level 4 that have waited too

long in the ready queue

Should be higher than current priority

Level 4 already is the highest priority, so Z = 4

Second example (V)

#ts_quantum ts_tqexp ts_slpret ts_maxwait ts_lwait LEVEL
1000 0 1 50000 1 # 0
500 0 2 20000 2 # 1
200 1 3 10000 3 # 2
100 2 4 10000 4 # 3
100 3 4 10000 4 # 4

◼ Recall that
ts_slpret and ts_lwait reward small CPU users

 ts_tqexp penalizes large CPU users

A last exercise

#ts_quantum ts_tqexp ts_slpret ts_maxwait ts_lwait LEVEL
1000 X 1 50000 1 # 0
500 Y 2 20000 2 # 1
200 1 3 10000 3 # 2
100 2 Z 10000 V # 3
100 3 U 10000 W # 4

◼ Fill the missing values

The six missing values

#ts_quantum ts_tqexp ts_slpret ts_maxwait ts_lwait LEVEL
1000 0 1 50000 1 # 0
500 0 2 20000 2 # 1
200 1 3 10000 3 # 2
100 2 4 10000 4 # 3
100 3 4 10000 4 # 4

◼ Recall that the only valid priorities are 0 to 4!

MacOS X Scheduler (I)

◼ Mac OS X uses a multilevel feedback queue

Manages threads, not processes

Four priority bands for threads

◼Normal

◼System high priority

◼Kernel mode only

◼Real-time

MacOS Scheduler (II)

◼ Thread priorities will vary

Must remain within their bands

Real-time threads tell the scheduler the number A of clock

cycles they will need out of the next B clock cycles

◼ Say 4000 out of the next 9000 clock cycles

Windows Scheduler

◼ An update of the old VMS scheduler

◼ Scheduler manages threads rather than processes.

◼ Has 32 priority levels:

16 to 31 for real-time threads

0 to 15 for other threads

◼ Priority zero reserved for the system thread zeroing free pages

Priority classes

◼ Apply to processes

◼ Five classes of process priorities

 IDLE_PRIORITY_CLASS

 BELOW_NORMAL_PRIORITY_CLASS

 NORMAL_PRIORITY_CLASS

 ABOVE_NORMAL_PRIORITY_CLASS

 HIGH_PRIORITY_CLASS

 REALTIME_PRIORITY_CLASS

Base priorities

◼ Apply to threads

◼ Defined within each process class

THREAD_PRIORITY_IDLE

THREAD_PRIORITY_LOWEST

THREAD_PRIORITY_BELOW_NORMAL

THREAD_PRIORITY_NORMAL

THREAD_PRIORITY_ABOVE_NORMAL

THREAD_PRIORITY_HIGHEST

THREAD_PRIORITY_TIME_CRITICAL

Real-time threads

◼ Real-time processes belong to REALTIME_PRIORITY_CLASS

◼ Threads at fixed priorities between 16 and 31

Specified by their base priority

◼ Scheduling is round-robin within each priority level

Other threads (I)

◼ Run at variable priorities between 1 and 15

◼ Each thread has a base priority

 Value depends on process class and thread priority level

within class

◼ 1 for all threads with THREAD_PRIORITY_IDLE

◼ 15 for all threads with

THREAD_PRIORITY_TIME_CRITICAL

Other threads (II)

◼ Thread priorities never go below their base priority

◼ These priorities are

 "Boosted" whenever they return from the blocked state

 Decremented when they exhaust their time slice

Thread affinity

◼ Thread affinity specifies the set of processors on which the

thread can run.

"Setting thread affinity should generally be avoided because it

can interfere with the scheduler's ability to schedule threads

effectively across processors."

◼ https://msdn.microsoft.com/en-

us/library/windows/desktop/ms684251(v=vs.85).aspx

Thread ideal processor

◼ Instructs the scheduler to run the thread on that processor

whenever possible

Does not guarantee that processor will always be chosen

Note

◼ Do not be confused by the two different usages of "suspended"

 Suspending a process is the same as swapping it out

 Suspending a thread in this context means moving it to the

blocked state

Guaranteed scheduling

◼ Class of scheduling algorithms that want to ensure that its

process has its fair share of CPU time

◼ Penalize processes that have used a large amount of CPU time

Penalty fades away over time

◼ Most versions of UNIX, Windows NT and after, Linux

Old UNIX Scheduler (I)

◼ Priorities take into account past CPU usage

p_usrpri = PUSER+p_cpu/2+p_nice

where

 PUSER is the user's base priority

 p_cpu its current CPU usage

 p_nice a user-settable parameter

DO NOT

MEMORIZE

THIS

Old UNIX Scheduler (II)

◼ p_cpu is updated every second according to a decay function

decay(p_cpu) = p_cpu/2

◼ After k seconds, penalty is decreased by a factor 1/2k

DO NOT

MEMORIZE

THIS

BSD scheduler (I)

◼ The time quantum is 100 milliseconds

p_usrpri = PUSER + p_cpu/4 + 2×p_nice

◼ p_cpu is updated every second according to:

p_cpu = (2×ld)/(2×ld+1)×p_cpu + p_nice

◼ where ld is a sampled average of the length of the run queue

over the last minute

DO NOT

MEMORIZE

THIS

BSD scheduler (II)

◼ Unlike the old UNIX scheduler, the BSD scheduler takes into

account the system load

 Through length of ready queue

◼ “Load average”

 Forgives old CPU usage more slowly when system load is

high

Linux 2.4 scheduler (I)

◼ Partitions the CPU time into epochs.

◼ At the beginning of each epoch, each process is assigned a time

quantum

 Specifies the maximum CPU time the process can have during

that epoch.

◼ Processes that exhaust their time quantum cannot get CPU time

until the next epoch starts

Linux 2.4 scheduler (II)

◼ Processes that release the CPU before their time quantum is

exhausted can get more CPU time during the same epoch.

◼ Epoch ends when all ready processes have exhausted their time

quanta.

◼ Priority of a process is the sum of its base priority plus the amount

of CPU time left to the process before its quantum expires.

Stride scheduling (I)

◼ Deterministic fair-share scheduler

◼ Start by allocating tickets to processes/threads

More tickets mean more core time

◼ Each thread has a stride

◼ Inversely proportional to the number n of tickets it has

◼ If thread A has 10 tickets, thread B has 5 tickets and thread

C has 20 tickets

Stride of A is 10, stride of B is 20 and stride of C is 5

NOT COVERED

THIS SEMESTER

Stride scheduling (II)

◼ Each process has a pass value

 Initially set to process stride

◼ Each time a process releases the CPU

Scheduler selects process with lowest pass

Gives it the CPU for a fixed time slide

◼ Each time a process gets the CPU

Scheduler adds the process stride to its pass value

NOT COVERED

THIS SEMESTER

The key idea

◼ Use epochs

◼ Have a thread priority ("pass")

 Initially set to "stride"

◼ Inversely proportional to the number of tickets allocated to

◼ Always schedule thread with lowest pass

◼ Penalize differently past core usage

NOT COVERED

THIS SEMESTER

Stride scheduling (II)

◼ Scheme is starvation free

 Processes that do not get any CPU time keep their original

pass values

 Other processes will see their pass values increase

NOT COVERED

THIS SEMESTER

Detailed example

Round Thread A

pass values:

10 tickets

stride is 10

Thread B

pass values:

5 tickets

stride is 20

Thread C

pass values

25 tickets:

stride is 4

Scheduler

will pick

thread

1 10 20 4 C

2 10 20 8 C

3 10 20 12 A

4 20 20 12 C

5 20 20 16 C

NOT COVERED

THIS SEMESTER

Explanations

◼ Process C gets first slot

 Lowest pass value (4)

◼ Process C gets second slot

 Lowest pass value (8)

◼ Process A gets third slot

 Lowest pass value (10)

◼ Process C gets fourth slot

 Lowest pass value (12)

NOT COVERED

THIS SEMESTER

Handling ties

◼ Whenever two threads have the same pass value, the scheduler

will pick the thread with the lowest stride

NOT COVERED

THIS SEMESTER

FreeBSD 5.0 ULE scheduler

◼ Designed for threads running on multicore architectures

For more details
http://www.informit.com/articles/article.aspx?p=2249436&seqNum=4

◼ Two parts

Low-level scheduler

◼Runs every time a core is released

High-level scheduler

◼Runs every second

http://www.informit.com/articles/article.aspx?p=2249436&seqNum=4

Low-level scheduler

◼ Kernel maintains a set of run queues for each CPU

With different priorities

◼ Low-level scheduler selects first thread on highest-level non-

empty run queue

High-level scheduler

◼ Reevaluates thread priorities

Real-time threads have fixed priorities

Scheduler detects interactive threads based on their

interactivity score:

◼ Scaling factor ×
𝑆𝑙𝑒𝑒𝑝 𝑡𝑖𝑚𝑒

𝑅𝑢𝑛 𝑡𝑖𝑚𝑒

◼ Also assigns threads to CPUs

Complex process

Observations

◼ Low-level scheduler is kept simple

 Quick decisions

◼ High-level scheduler uses a very clever method to detect

interactive processes

(𝑉𝑜𝑙𝑢𝑛𝑡𝑎𝑟𝑦)𝑆𝑙𝑒𝑒𝑝 𝑡𝑖𝑚𝑒

𝑅𝑢𝑛 𝑡𝑖𝑚𝑒

◼ Must still pick length of observation period

Short term v. long term behavior

