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Chapter overview

 The problem

 Non-preemptive policies:
FCFS, SJF

 Preemptive policies:
Round robin, multilevel queues with feedback, 

guaranteed scheduling
Examples: UNIX, Linux, Windows NT and after



The scheduler

 Part of the OS that decides how to allocate the processor 
cores and the main memory to processes

 Will focus here on the CPU scheduler
 Decides which ready process should get a processor core
 Also called short-term scheduler



Objectives

 A good scheduler should
Minimize user response times of all interactive processes

 Major objective today
 Maximize system throughput
 Be fair
 Avoid starvation



What is starvation?

 Starvation happens whenever some ready processes never get 
core time
Typical of schedulers using priorities

 Lowest-priority processes keep getting set aside 
 Remedy is to increase the priorities of processes that have 

waited too long



Fairness

 Ensuring fairness is more difficult than avoiding starvation
 If I give freshly-baked cookies to half of my nephews and stale 

bread to the others, I am not fair but I still ensure that nobody 
starves



Non-preemptive Schedulers

 A non-preemptive CPU scheduler will never remove a core from 
a running process

 Will wait until the process releases the core because
 It issues a system call 
 It terminates

 Now obsolete



How SJF works

 Five students wait for their instructor at the beginning of 
her office hours
 Ann needs 20 minutes of her time
 Bob needs 30 minutes
 Carol needs 10 minutes
 Dean needs 5 minutes
 Emily needs 5 minutes



Examples (I)

 First-Come First-Served (FCFS):
 Simplest and easiest to implement

 Uses a FIFO queue
 Seems a good idea but

 Processes requiring a few ms of core time have to wait 
behind processes that make much bigger demands

 Inacceptable 



Examples (II)

 Shortest Job First (SJF):
 Gives a core to the process requesting the least amount of 

core time
 Will reduce average wait
 Must know ahead of time how much core time each process 

needs
Not possible

Still lets processes monopolize a core



FCFS schedule

Student Time Wait

Ann 20 0

Bob 30 20

Carol 10 50

Dean 5 60

Emily 5 65



The outcome

 Average wait time:
(0 + 20 + 50 + 60 + 65)/5 = 39 minutes



SJF schedule

Student Time Wait

Dean 5 0

Emily 5 5

Carol 10 10

Ann 20 20

Bob 30 40



The outcome

 Average wait time:
 (0 + 5 + 10 + 20 + 40)/5 = 15 minutes

 Less than half the wait time of the FCFS schedule
The data were rigged



Preemptive Schedulers 

 A preemptive scheduler can return a running process to the 
ready queue whenever another process requires that core in a 
more urgent fashion 
 Has been for too long in the ready queue
 Has higher priority 

 Sole acceptable solution
 Prevents processes from “hogging” a core



Types of preemptive schedulers

 Preemptive schedulers w/o priorities:
All processes have the same priority
Ready queue is FIFO

 Preemptive schedulers with priorities:
Use multiple queues
Differ in the way they adjust process priorities



Round robin (I)

 Assumes all processes have same priority
Guaranteed to be starvation-free

 Similar to FCFS but processes only get the a core for up to TCPU
time units
Time slice or time quantum

 Processes that exceed their time slice return to the end of the 
ready queue



Round robin (II)

Ready queue
Core

System call

Process exceeds
time slice

System request completion



How RR works

 Assume
Single core
Time slice is 100ms (reasonable choice)
Ready queue contains processes A, B and C

 A gets core at t = 0ms
 A releases the core at t = 24ms to do an I/O
 B gets core at t = 24ms
 A returns to ready queue at t = 32ms
 B forced to release the core at t = 124ms



Finding the right time slice (I)

 A small time slice means a good response time 
 No process will ever have to wait more than

 𝒏𝒓𝒆𝒂𝒅𝒚𝑸𝒖𝒆𝒖𝒆  1 𝑻𝑪𝑷𝑼 time units

where 𝒏𝒓𝒆𝒂𝒅𝒚𝑸𝒖𝒆𝒖𝒆 is the number of processes already in the 
ready queue 

 A large time slice means a better throughput
 Fewer context switches 



Finding the right time slice (II)

Ideal CPU schedule

P0 P1 P2 P3 P4

P0 P2 P3

True CPU schedule

CS CSP1 CS CS P4



The problem

 Want to adjust the time slice to guarantee a maximum waiting 
time in the ready queue

𝑻𝑪𝑷𝑼  𝑻𝒎𝒂𝒙 / 𝒏𝒓𝒆𝒂𝒅𝒚_𝒒𝒖𝒆𝒖𝒆 
 𝟏

 Works well as long as system is lightly loaded

 Produces very small time slices when system is loaded
 Too much context switch overhead!



An observation

 The throughput of a system using a RR scheduler actually 
decreases when its workload exceeds some threshold

Rare among physical systems

Frequent among systems experiencing congestion
Freeway throughput actually decreases when its load 

exceeds some threshold



The solution (I)

 Add priorities

 Distinguish among
 Interactive processes
 I/O-bound processes

Require small amounts of core time
 CPU-bound processes

Require large amounts of core time (number crunching)



The solution (II)

 Assign
High priorities to interactive processes
Medium priorities to I/O-bound processes
Low priorities to CPU-bound processes



The solution (III)

 Assign
Smallest time slices to interactive processes
Medium time slices to I/O-bound processes
Biggest time slices to CPU-bound processes

 Allow higher priority processes to steal cores from lower priority 
processes



The outcome

 Interactive processes will get good response times

 CPU-bound processes will get the CPU
Less frequently than with RR
For longer periods of time
Less context switch overhead



Two problems

 How to assign priorities to processes?
 Process behaviors may change during their execution
 Should adjust process priorities

 How to avoid starvation?
Adjust process priorities



Multi-Level with Feedback Queues

 Use dynamic priorities
 Reward
Processes that issue system calls
Processes that interact with user
Processes that have been a long time in the ready queue

 Penalize
Processes that exceed their time slice



Implementation (I)

High priority queue

Medium priority queue

Low priority queue System
call

CPU



Implementation (II)

 Time slice increase when priority decreases, say
 T for high priority processes
 2T for medium priority processes
 4T for low priority processes



The priority game

 Different systems have different conventions for priorities
 0 is highest 

Most UNIX systems, Linux
0 is lowest 

UNIX System V Release 4 (V.4)
Windows NT and after



System V.4 scheduler

 Three process classes:
 Real-time
 Time-sharing 
 System (for kernel processes)

 Each process class has its own priority levels
 Real-time processes have highest priority 
 Time-sharing lowest



Real-time processes

 Have fixed priorities
 As in Windows scheduler

 System administrator can define
 A different quantum size (rt_quantum)

for each priority level 



Timesharing processes (I)

 Have variable priorities

 System administrator can specify the parameters of each priority 
level
 Maximum flexibility 
 Maximum risk of making a bad choice

Leaving too many tuning options for the 
system administrator increases the chances 
that the some options will be poorly selected



Timesharing processes (II)

 Parameters include 

 Quantum size ( ts_quantum)

 New priority for processes that use their whole CPU quantum 
(ts_tqexp)

 New priority for processes returning from blocking state 
(ts_slpret)



Timesharing processes (III)

 Maximum amount of time a process can remain in the ready 
queue without having its priority recomputed (ts_maxwait)

 New priority for processes that have been in the ready queue 
for ts_maxwait (ts_lwait)



Example

 System has four priority levels
0 is lowest
3 is highest

 Anything after a pound sign is a comment

#ts_quantum ts_tqexp ts_slpret ts_maxwait ts_lwait LEVEL
1000        0        1        50000       1     #  0
500        0        2        20000       2     #  1
200        1        3        10000       3     #  2
100        2        3        10000       3     #  3



How to read it

 New priorities can be 
 Rewarding a “good” behavior:
ts_slpret and ts_lwait

 Penalizing CPU “hogs”:
ts_tqexp

#ts_quantum ts_tqexp ts_slpret ts_maxwait ts_lwait LEVEL
1000        0        1        50000       1     #  0
500        0        2        20000       2     #  1
200        1        3        10000       3     #  2
100        2        3        10000       3     #  3



How?

 We increase the priority of processes that
 Have completed a system call

 They might become less CPU-bound
 Have waited a long time in the ready queue

 To prevent starvation

 We decrease the priority of processes that
 Have exhausted their time quantum

 They might be more CPU-bound



Second example (I)

 Table now defines five priority levels

 What are the correct values for X, Y and Z?

#ts_quantum ts_tqexp ts_slpret ts_maxwait ts_lwait LEVEL
1000        0        1        50000       1     #  0
500        X        2        20000       2     #  1
200        1        3        10000       3     #  2
100        2        Y        10000       4     #  3
100        3        4        10000       Z #  4



Second example (II)

 X is the new priority for processes at level 1 that exceed 
their time quantum
 Must be lower than current priority 

X=0

#ts_quantum ts_tqexp ts_slpret ts_maxwait ts_lwait LEVEL
1000        0        1        50000       1     #  0
500        X 2        20000       2     #  1
200        1        3        10000       3     #  2
100        2        Y        10000       4     #  3
100        3        4        10000       Z #  4



Second example(III)

 Y is a the new priority for processes at level 3 that 
exceed their time quantum
 Must be higher than current priority 

Y=4

#ts_quantum ts_tqexp ts_slpret ts_maxwait ts_lwait LEVEL
1000        0        1        50000       1     #  0
500        0        2        20000       2     #  1
200        1        3        10000       3     #  2
100        2        Y 10000       4     #  3
100        3        4        10000       Z #  4



Second example (IV)

 Z is a the new priority for processes at level 4 that have 
waited too long in the ready queue
Should be higher than current priority 
Level 4 already is the highest priority

Z = 4

#ts_quantum ts_tqexp ts_slpret ts_maxwait ts_lwait LEVEL
1000        0        1        50000       1     #  0
500        0        2        20000       2     #  1
200        1        3        10000       3     #  2
100        2        4        10000       4     #  3
100        3        4        10000       Z #  4



Second example (V)

 Recall that 
ts_slpret and ts_lwait reward “good” 

behaviors
 ts_tqexp penalizes a “bad” one

#ts_quantum ts_tqexp ts_slpret ts_maxwait ts_lwait LEVEL
1000        0        1        50000       1     #  0
500        0        2        20000       2     #  1
200        1        3        10000       3     #  2
100        2        Y 10000       4     #  3
100        3        4        10000       Z #  4



An exercise

 Fill the missing values

#ts_quantum ts_tqexp ts_slpret ts_maxwait ts_lwait LEVEL
1000        X        1        50000       1     #  0
500        Y        2        20000       2     #  1
200        1        3        10000       3     #  2
100        2        Z        10000       V     #  3
100        3        U        10000       W #  4



The solution

 Recall that the only valid priorities are 0 to 4!

#ts_quantum ts_tqexp ts_slpret ts_maxwait ts_lwait LEVEL
1000        X=0 1        50000       1       #  0
500        Y=0 2        20000       2       #  1
200        1      3        10000       3       #  2
100        2      Z=4 10000       V=4 #  3
100        3      U=4 10000       W=4 #  4



MacOS X Scheduler (I)

 Mac OS X uses a multilevel feedback queue

Manages threads, not processes

Four priority bands for threads 
Normal
System high priority
Kernel mode only
Real-time



MacOS Scheduler (II)

 Thread priorities will vary 
Must remain within their bands
Real-time threads tell the scheduler the number A of clock 

cycles they will need out of the next B clock cycles
 Say 4000 out of the next 9000 clock cycles 



Windows Scheduler

 An update of the old VMS scheduler

 Scheduler manages threads rather than processes.

 Has 32 priority levels:
16 to 31 for real-time threads
0 to 15 for other threads

 Priority zero reserved for the system thread zeroing free pages



Priority classes

 Apply to processes
 Five classes of process priorities
 IDLE_PRIORITY_CLASS
 BELOW_NORMAL_PRIORITY_CLASS
 NORMAL_PRIORITY_CLASS
 ABOVE_NORMAL_PRIORITY_CLASS
 HIGH_PRIORITY_CLASS
 REALTIME_PRIORITY_CLASS



Base priorities

 Apply to threads
 Defined within each process class
THREAD_PRIORITY_IDLE
THREAD_PRIORITY_LOWEST
THREAD_PRIORITY_BELOW_NORMAL
THREAD_PRIORITY_NORMAL
THREAD_PRIORITY_ABOVE_NORMAL
THREAD_PRIORITY_HIGHEST
THREAD_PRIORITY_TIME_CRITICAL



Real-time threads

 Real-time processes belong to REALTIME_PRIORITY_CLASS
 Threads at fixed priorities between 16 and 31
Specified by their base priority

 Scheduling is round-robin within each priority level



Other threads (I)

 Run at variable priorities between 1 and 15
 Each thread has a base priority 
 Value depends on process class and thread priority level 

within class
 1 for all threads with THREAD_PRIORITY_IDLE 
 15 for all threads with 

THREAD_PRIORITY_TIME_CRITICAL



Other threads (II)

 Thread priorities never go below their base priority

 These priorities are
 "Boosted" whenever they return from the blocked state 
 Decremented when they exhaust their time slice



Thread affinity

 Thread affinity specifies the set of processors on which the 
thread can run.
"Setting thread affinity should generally be avoided because it 

can interfere with the scheduler's ability to schedule threads 
effectively across processors."
 https://msdn.microsoft.com/en-

us/library/windows/desktop/ms684251(v=vs.85).aspx



Thread ideal processor

 Instructs the scheduler to run the thread on that processor 
whenever possible
Does not guarantee that processor will always be chosen



Note

 Do not be confused by the two different usages of "suspended"
 Suspending a process is the same as swapping it out
 Suspending a thread in this context means moving it to the 

blocked state



Guaranteed scheduling

 Class of scheduling algorithms that want to ensure that its 
process has its fair share of CPU time

 Penalize processes that have  used a large amount of CPU 

 Most versions of UNIX, Windows NT and after, Linux



Old UNIX Scheduler (I)

 Priorities take into account past CPU usage
p_usrpri = PUSER+p_cpu/2+p_nice

where
 PUSER is the user's base priority 
 p_cpu its current CPU usage 
 p_nice a user-settable parameter 

DO NOT 

MEMORIZE

THIS



Old UNIX Scheduler (II)

 p_cpu is updated every second according to a decay function
decay(p_cpu) = p_cpu/2

 After k seconds, penalty is decreased by a factor 1/2k

DO NOT 

MEMORIZE

THIS



BSD scheduler (I)

 The time quantum is 100 ms
p_usrpri = PUSER + p_cpu/4 + 2×p_nice

 p_cpu is updated every second according to:
p_cpu = (2×ld)/(2×ld+1)×p_cpu + p_nice

 where ld is a sampled average of the length of the run queue 
over the last minute

DO NOT 

MEMORIZE

THIS



BSD scheduler (II)

 Unlike the old UNIX scheduler, the BSD scheduler takes into 
account the system load

 Through length of ready queue
 “Load average”

 Forgives old CPU usage  more slowly when system load is 
high



Linux 2.4 scheduler (I)

 Partitions the CPU time into epochs.

 At the beginning of each epoch, each process is assigned a time 
quantum
 Specifies the maximum CPU time the process can have during 

that epoch.

 Processes that exhaust their time quantum cannot get CPU time 
until the next epoch starts



Linux 2.4 scheduler (II)

 Processes that release the CPU before their time quantum is 
exhausted can get more CPU time during the same epoch.

 Epoch ends when all ready processes have exhausted their time 
quanta.

 Priority of a process is the sum of its base priority plus the amount 
of CPU time left to the process before its quantum expires.



Stride scheduling (I)

 Deterministic fair-share scheduler 
 Start by allocating tickets to processes/threads
More tickets mean more core time

 Each thread has a stride
 Inversely proportional to the number n of tickets it has
 If thread A has 10 tickets, thread B has 5 tickets and thread 

C has 20 tickets
Stride of A is 10, stride of B is 20 and stride of C is 5

NOT COVERED
THIS SEMESTER



Stride scheduling (II) 

 Each process has a pass value 
 Initially set to process stride

 Each time a process releases the CPU
Scheduler selects process with lowest pass
Gives it the CPU for a fixed time slide

 Each time a process gets the CPU
Scheduler adds the process stride to its pass value

NOT COVERED
THIS SEMESTER



The key idea

 Use epochs
 Have a thread priority ("pass")
 Initially set to "stride"

 Inversely proportional to the number of tickets allocated to 
 Always schedule thread with lowest pass
 Penalize differently  past  core usage

NOT COVERED
THIS SEMESTER



Stride scheduling (II)

 Scheme is starvation free
 Processes that do not get any CPU time keep their original 

pass values
 Other processes will see their pass values increase 

NOT COVERED
THIS SEMESTER



Example

Round

Pass values                      
Scheduler
will pick 
thread

Thread A
10 tickets

stride is 10

Thread B
5 tickets

stride is 20

Thread C
25 tickets
stride is 4

1 10 20 4 C
2 10 20 8 C
3 10 20 12 A
4 20 20 12 C
5 20 20 16 C

NOT COVERED
THIS SEMESTER



Explanations

 Process C gets first slot
 Lowest pass value (4)

 Process C gets second slot
 Lowest pass value (8)

 Process A gets third slot
 Lowest pass value (10)

 Process C gets fourth slot
 Lowest pass value (12)



Note

 Whenever two threads have the same pass value, the scheduler 
will pick the thread with the lowest stride

NOT COVERED
THIS SEMESTER



FreeBSD 5.0 ULE scheduler

 Designed for threads running on multicore architectures
For more details

http://www.informit.com/articles/article.aspx?p=2249436&seqNum=4

 Two parts
Low-level scheduler

Run every time a core is released
High-level scheduler 

Run every second



Low-level scheduler

 Kernel maintains a set of run queues for each CPU
With different priorities

 Low-level scheduler selects first thread on highest-level non-
empty run queue



High-level scheduler

 Reevaluates thread priorities
Real-time threads have fixed priorities
Scheduler detects interactive threads on the base of their 

interactivity score:

 Scaling factor  
 

 

 Also assigns threads to CPUs
Complex process



Observations

 Low-level scheduler is kept simple
 Quick decisions

 High-level scheduler uses a very clever method to detect 
interactive processes

 Must still pick length of observation period
Short term v. long term behavior


