
Chapter IV

INTER-PROCESS

COMMUNICATION

Jehan-François Pâris

jfparis@uh.edu

Chapter overview

◼ Types of IPC

 Message passing

 Shared memory

◼ Message passing

 Blocking/non-blocking, …

 Datagrams, virtual circuits, streams

 Remote procedure calls

Message passing (I)

◼ Processes that want to exchange data send and receive

messages

◼ Any message exchange requires

 A send

send(addr, msg, length);

 A receive

receive(addr, msg, length);

Message passing (II)

Receivermsg

receive(…)

send(…)

Sender

Advantages

◼ Very general

 Sender and receivers can be on different machines

◼ Relatively secure

 Receiver can inspect the messages it has received before

processing them

Disadvantages

◼ Hard to use

 Every data transfer requires a send() and a receive()

 Receiving process must expect the send()

◼ Might require forking a special thread

Shared Memory

◼ Name says it

 Two or more processes share a part of their address space

Process P

Process Q

shared

Advantages

◼ Fast and easy to use

 The data are there

but

 Some concurrent accesses to the shared data can result into

small disasters

 Must synchronize access to shared data

◼ Topic will be covered in next chapter

Limitations

◼ Not a general solution

 Sender and receivers must be on the same machine

◼ Less secure

 Processes can directly access a part of the address space of

other processes

Message passing

Defining issues

◼ Direct/Indirect communication

◼ Blocking/Non-blocking primitives

◼ Exception handling

◼ Quality of service

 Unreliable/reliable datagrams

 Virtual circuits, streams

Direct communication (I)

◼ Send and receive system calls always specify processes as

destination or source:

 send(process, msg, length);

 receive(process, msg, &length);

◼ Most basic solution because there is

 No intermediary between sender and receiver

An analogy

◼ Phones without switchboard

 Each phone is hardwired to another phone

Direct communication (II)

◼ Process executing the receive call must know the identity of all

processes likely to send messages

 Very bad solution for servers

◼ Servers have to answer requests from arbitrary processes

Indirect communication (I)

◼ Send and receive primitives now specify an intermediary entity

as destination or source: the mailbox

send(mailbox, msg, size);
receive(mailbox, msg, &size);

◼ Mailbox is a system object created by the kernel at the request of

a user process

Back to the phone analogy (I)

◼ Phones with a switchboard

 Each phone can receive calls from any other phone

Back to the phone analogy (II)

◼ Each phone has now a phone number

 Callers dial that number, not a person’s name

◼ Taking our phone with us allows us to receive phone calls from

everybody

Indirect communication (II)

◼ Different processes can send messages to the same mailbox

 A process can receive messages from processes it does not

know anything about

 A process can wait for messages coming from different

senders

◼ Will answer the first message it receives

Mailboxes

◼ Mailboxes can be

 Private

◼ Attached to a specific process

 Think of your cell phone

 Public

◼ System objects

 Think of a house phone

Private mailboxes

◼ Process that requested its creation and its children are the only

processes that can receive messages through the mailbox are

that process and its children

◼ Cease to exist when the process that requested its creation (and

all its children) terminates.

◼ Often called ports

◼ Example: BSD sockets

Public mailboxes

◼ Owned by the system

◼ Shared by all the processes having the right to receive messages
through it

◼ Survive the termination of the process that requested their
creation

◼ Work best when all processes are on the same machine

◼ Example: System V UNIX message queues

Blocking primitives (I)

◼ A blocking send does not return until the receiving process has

received the message

 No buffering is needed

 Analogous to what is happening when you call somebody who

does not have voice mail

Blocking primitives (II)

◼ A blocking receive does not return until a message has been

received

 Like waiting by the phone for an important message or staying

all day by your mailbox waiting for the mail carrier

Blocking primitives (III)

Receiver

send(…)

Sender
receive(…)

Non-blocking primitives (I)

◼ A non-blocking send returns as soon as the message has been
accepted for delivery by the OS

 Assumes that the OS can store the message in a buffer

 Like mailing a letter: once the letter is dropped in the mailbox,
we are done

◼ The mailbox will hold your letter until a postal employee
picks it up

Non-blocking primitives (II)

◼ A non-blocking receive returns as soon as it has either retrieved

a message or learned that the mailbox is empty

 Like checking whether your mail has arrived or not

Non-blocking primitives (III)

Buffer

Receiver

msg

receive(…)
acts as a

retrieve(…)

send(…)Sender

Simulating blocking receives

◼ Can simulate a blocking receive with a non-blocking receive

inside a loop:

do {
code = receive(mbox, msg, size);
sleep(1); // delay
} while (code == EMPTY_MBOX);

◼ Known as a busy wait

 Costlier than a blocking wait

Simulating blocking sends

◼ Can simulate a blocking send with two non-blocking sends and a

blocking receive:

 Sender sends message and requests an acknowledgement

(ACK)

 Sender waits for ACK from receiver using a blocking receive

 Receiver sends ACK

◼ Think certified mail with return receipt requested

The standard choice

◼ In general we prefer

 Indirect naming

 Non-blocking sends

◼ Sender does not care about what happens once the

message is sent

◼ Similar to UNIX delayed writes

 Blocking receives

◼ Receiver needs the data to continue

Buffering

◼ Non-blocking primitives require buffering to let OS store

somewhere messages that have been sent but not yet received

◼ These buffers can have

 Bounded capacity

◼ Refuse to receive messages when the buffer is full

 Theoretically unlimited capacity.

An explosive combination (I)

◼ Blocking receive does not go well with direct communication

 Processes cannot wait for messages from several sources

without using special parallel programming constructs:

◼ Dijkstra's alternative command

An explosive combination (II)

◼ Using blocking receives with direct naming does not allow the
receiving process to receive any messages from any other
process

Q

R

S

P receive(Q, msg)

X

?

X

Exception condition handling

◼ Must specify what to do if one of the two processes dies

 Especially important whenever the two processes are on two

different machines

◼ Must handle

 Host failures

 Network partitions

Quality of service

◼ When sender and receiver are on different machines, messages

 Can be lost, corrupted or duplicated

 Arrive out of sequence

◼ Can still decide to provide reliable message delivery

 Using positive acknowledgments

Positive acknowledgments

◼ Basic technique for providing reliable delivery of messages

◼ Destination process sends an acknowledgment message (ACK)

for every message that was correctly delivered

 Damaged messages are ignored

◼ Sender resends any message that has not been acknowledged

within a fixed time frame

First scenario

Sends ACK

Sends message

Sender Receiver

Second scenario

Receiver

Sends message

Message is lost:

no ACK is sent

Resends message

Sender

X

Third scenario (I)

Receiver

Sends ACK

Sends message

ACK is lost

Resends message

XSender

Third scenario (II)

◼ Receiver must acknowledge a second time the message

 Otherwise it would be resent one more time

◼ Rule is

 Acknowledge any message that does not need to be

resent!

Classes of service

◼ Datagrams:

 Messages are send one at time

◼ Virtual circuits:

 Ordered sequence of messages

 Connection-oriented service

◼ Streams:

 Ordered sequence of bytes

 Message boundaries are ignored

Datagrams

◼ Each message is sent individually

◼ Some messages can be lost, other duplicated or arrive out of

sequence

◼ Equivalent of a conventional letter

◼ Reliable datagrams:

resent until they are acknowledged

◼ Unreliable datagrams

Unreliable datagrams (I)

◼ Messages are not acknowledged

◼ Works well when message requests a reply

 Reply is implicit ACK of message

Server

Sends request

Client

Sends reply
(and ACKs the request)

Unreliable datagrams (II)

◼ Exactly what we do in real life:

 We rarely ACK emails and other messages

 We reply to them!

◼ Sole reason to ACK a request is when it might take a long time to

reply to it

UDP

◼ User Datagram Protocol

◼ Best known datagram protocol

◼ Provides an unreliable datagram service

 Messages can be lost, duplicated or arrive out of sequence

◼ Best for short interactions

 Request and reply fit in single messages.

Virtual circuits (I)

◼ Establish a logical connection between the sender and the

receiver

◼ Messages are guaranteed to arrive in sequence without lost

messages or duplicated messages

 Same as the words of a phone conversation

Virtual circuits (II)

◼ Require setting up a virtual connection before sending any data

 Costlier than datagrams

◼ Best for transmitting large amounts of data that require sending

several messages

 File transfer protocol (FTP)

 Hypertext transfer protocol (HTTP)

Streams

◼ Like virtual circuits

◼ Do not preserve message boundaries:

 Receiver sees a seamless stream of bytes

◼ Offspring of UNIX philosophy

 Record boundaries do not count

◼ Ignore them

 Message boundaries should not count

◼ Ignore them

TCP

◼ Transmission Control Protocol

◼ Best known stream protocol

◼ Provides a reliable stream service

◼ Said to be heavyweight

 Requires three messages (packets) to establish a virtual

connection

Datagrams and Streams

◼ Datagrams:

 Unreliable

 Not ordered

 Lightweight

 Deliver messages

◼ Example:

 UDP

◼ Streams:

 Reliable

 Ordered

 Heavyweight

 Deliver byte streams

◼ Example:

 TCP

A case study

◼ Voice over IP (VoIP)

 Uses the internet for phone calls

 Much cheaper than conventional copper-wire technology

◼ Rapidly replacing it

 Relies on best-effort networks

◼ No quality of service (QoS) guarantees

TCP or UDP?

◼ TCP would provide

 Safe, reliable data transmission

 Unacceptable delays whenever the network is congested

◼ We use UDP

 Lower latency

◼ Handles better congested networks

 Users tolerate the occasional loss of voice data

UDP Joke

“Hello, I would like to tell you a UDP joke

but I am afraid you will not get it”

TCP Joke

Remote Procedure Calls

Motivation (I)

◼ Apply to client-server model of computation

◼ A typical client-server interaction:

send_req(args); rcv_req(&args);
process(args, &results);
send_reply(results);

rcv_reply(&results);

Motivation (II)

◼ Very similar to a conventional procedure call:

◼ xyz(args, &results); xyz(...) {
. . .
return;

... } // xyz

◼ Try to use the same formalism

The big idea

◼ We could write

rpc(xyz, args, &results); xyz(...) {
. . .
return;

... } // xyz

and let the system take care of all message passing details

Advantages

◼ Hides all details of message passing

 Programmers can focus on the logic of their applications

◼ Provides a higher level of abstraction

◼ Extends a well-known model of programming

 Anybody that can use procedures and function can quickly

learn to use remote procedure calls

Disadvantage

◼ The illusion is not perfect

 RPCs do not always behave like regular procedure calls

◼ Client and server do not share the same address space

◼ Programmer must remain aware of these subtle and not so subtle

differences

General Organization

Server

Procedure

User

Stub

calls calls

Server

Stub

User

Program

(system generated)

(system generated)

What the programmer sees

Server

Procedure

Does a RPC

User

Program

All IPC between

client and server

are hidden

The user program

◼ Contains the user code

◼ Calls the user stub

rpc(xyz, args, &results);

◼ Appears to call the server procedure

The user stub

◼ Procedure generated by RPC package:

 Packs arguments into request message and performs required

data conversions

(argument marshaling)

 Sends request message

 Waits for server's reply message

 Unpacks results and performs required data conversions

(argument unmarshaling)

The server stub

◼ Generic server generated by RPC package:

 Waits for client requests

 Unpacks request arguments and performs required data

conversions

 Calls appropriate server procedure

 Packs results into reply message and performs required data

conversions

 Sends reply message

The server procedure

◼ Procedure called by the server stub

◼ Written by the user

◼ Does the actual processing of user requests

Differences with regular PC

◼ Client and server do not share a common address space

 Two different processes with different address spaces

◼ Client and server can be on different machines

◼ Must handle partial failures

No common address space

◼ This means

 No global variables

 Cannot pass addresses

◼ Cannot pass arguments by reference

◼ Cannot pass dynamic data structures through pointers

The solution

◼ RPC can pass arguments by value and result

 Pass the current value of the argument to the remote

procedure

 Copy the returned value in the user program

◼ Not the same as passing arguments by reference

Passing by reference

Caller:

…

i = 0;
abc(&i);

…

i

abc(int &k){
k++;

}

Procedure abc() will

directly increment

variable i

Passing by value and result

i = 1

i = 0

Caller:

…
i = 0;
abc(&i);
…

i

abc(int &k){
k++;

}

The variable i is updated

after caller receives

server’s reply

An example (I)

◼ Function doubleincrement

void doubleincrement(int &a, int &b) {
a++; b++;

} // doubleincrement

◼ Calling

doubleincrement(&m, &m);

should increment m twice

An example (II)

◼ Calling

doubleincrement(&m, &m);

passing arguments by value and return only increments m once

◼ Let us consider the code fragment

int m = 1;
doubleincrement(&m, &m);

Passing by reference

Caller:

…
int m = 1;
doubleincrement(&m,&m);
…

m

Pass TWICE the

ADDRESS of m

Variable m gets

incremented

TWICE

Passing by value and result

Caller:

…
int m = 1;
doubleincrement(&m,&m);
…

m

Pass twice the
VALUE of m:
1 and 1

Return two
NEW VALUES:
2 and 2

Passing dynamic types (I)

◼ Cannot pass dynamic data structures through pointers

 Must send a copy of data structure

◼ For a linked list

 Send array with elements of linked list plus unpacking

instructions

Passing dynamic types (II)

◼ We want to pass

◼ We send to the remote procedure

◼ Header identifies linked list (LL) with four elements (4)

A B C D NIL

A B C DLL 4

The NYC Cloisters

Rebuilt in NYC from actual cloister stones

Architecture considerations

◼ The machine representations of floating point numbers and byte

ordering conventions can be different:

 Little-endians start with least significant byte:

◼ Intel's 80x86 , AMD64 / x86-64

 Big-endians start with most significant byte:

◼ IBM z and OpenRISC

If you really want to know

◼ Big-endians

◼ Little-endians

4-byte integer

00 01 10 11

4-byte integer

11 10 01 00

The standard solution

◼ Define a network order and convert all numerical variables to

that network order

 Use hton family of functions

 Same as requiring all air traffic control communications to be in

English

 If you want to know, the network order is big-endian

Detecting partial failures

◼ The client must detect server failures

 Can send are you alive? messages to the server at fixed time

intervals

 That is not hard!

Handling partial executions

◼ Client must deal with the possibility that the server could have

crashed after having partially executed the request

 ATM machine calling the bank computer

◼ Was the account debited or not?

First solution (I)

◼ Ignore the problem and always resubmit requests that have not

been answered

 Some requests may be executed more than once

◼ Will work if all requests are idempotent

 Executing them several times has the same effect as executing

them exactly once

First solution (II)

◼ Examples of idempotent requests include:

Reading n bytes from a fixed location

◼ NOT reading next n bytes

Writing n bytes starting at a fixed location

◼ NOT writing n bytes starting at current location

◼ Technique is used by all RPCs in the Sun Microsystems’ Network

File System (NFS)

Second solution

◼ Attach to each request a serial number

 Server can detect replays of requests it has previously

received and refuse to execute them

At most once semantics

◼ Cheap but not perfect

 Some requests could end being partially executed

Third solution

◼ Use a transaction mechanism

 Guarantees that each request will either be fully executed or

have no effect

 All or nothing semantics

◼ Best and costliest solution

◼ Use it in all financial transactions

An example

◼ Buying a house using mortgage money

 Cannot get the mortgage without having a title to the house

 Cannot get title without paying first previous owners

 Must have the mortgage money to pay them

◼ Sale is a complex atomic transaction

Another example

Realizations (I)

◼ Sun RPC:

 Developed by Sun Microsystems

 Used to implement their Network File System

◼ MSRPC (Microsoft RPC):

 Proprietary version of the DCE/RPC protocol

 Was used in the Distributed Component Object Model

(DCOM).

For your

information

Realizations (II)

◼ SOAP:

 Exchanges XML-based messages

 Runs on the top of HTTP

◼ Very portable

◼ Very verbose

◼ JSON-RPC:

 Uses JavaScript Object Notation (JSON)

For your

information

