Chapter IV

INTER-PROCESS
COMMUNICATION

Jehan-Francois Paris
jfparis@uh.edu

g
Chapter overview

m Types of IPC
1 Message passing
0 Shared memory
m Message passing
1 Blocking/non-blocking, ...
01 Datagrams, virtual circuits, streams
1 Remote procedure calls

- -=EENT
Message passing (l)

m Processes that want to exchange data send and receive
messages

= Any message exchange requires
1A send
send(addr, msg, length);
1 A receive
receive(addr, msg, length);

- =BT

Message passing (l)

Sender

send(...)

»

msg

#

receive(...)

Receiver

g
Advantages

= Very general
1 Sender and receivers can be on different machines

m Relatively secure

1 Receiver can inspect the messages it has received before
processing them

g
Disadvantages

m Hard to use
1 Every data transfer requires a send() and a receive()
1 Receiving process must expect the send()
= Might require forking a special thread

= SN
Shared Memory

= Name says it
1 Two or more processes share a part of their address space

Process P -

ésharedé

Process Q -

“ -=EENT
Advantages

m Fast and easy to use
1 The data are there

but

1 Some concurrent accesses to the shared data can result into
small disasters

1 Must synchronize access to shared data
= Topic will be covered in next chapter

g
Disadvantages

m Not a general solution
1 Sender and receivers must be on the same machine
m Less secure

1 Processes can directly access a part of the address space of
other processes

Message passing

g
Defining issues

m Direct/Indirect communication
= Blocking/Non-blocking primitives
m Exception handling

= Quality of service
1 Unreliable/reliable datagrams
1 Virtual circuits, streams

« -=EENNT
Direct communication (l)

® Send and receive system calls always specify processes as
destination or source:

1 send(process, msg, length);
0 receive(process, msg, &length);

= Most basic solution because there is
1 No intermediary between sender and receiver

« -=EENNT
An analogy

= Phones without switchboard
1 Each phone is hardwired to another phone

- -=EENNT
Direct communication (l)

m Process executing the receive call must know the identity of all
processes likely to send messages

0 Very bad solution for servers
n Servers have to answer requests from arbitrary processes

« -=EENTT
Indirect communication (l)

m Send and receive primitives now specify an intermediary entity
as destination or source: the mailbox
send(mailbox, msg, size);
receive(mailbox, msg, &size);

= Mailbox is a system object created by the kernel at the request of
a user process

= CE—
An analogy (I)

= Phones with a switchboard
1 Each phone can receive calls from any other phone

= E—
An analogy (Il)

= Each phone has now a phone number
01 Callers dial that number, not a person’s name

m Taking our phone with us allows us to receive phone calls from
everybody

« -=EENNT
Indirect communication (ll)

m Different processes can send messages to the same mailbox

1 A process can receive messages from processes it does not
know anything about

1 A process can wait for messages coming from different
senders

= Will answer the first message it receives

= SEE—

Mailboxes

= Mailboxes can be
1 Private
= Attached to a specific process
01 Think of your cell phone
1 Public
= System objects
0 Think of a house phone

'__
Private mailboxes

m Process that requested its creation and its children are the only
processes that can receive messages through the mailbox are
that process and its children

m Cease to exist when the process that requested its creation (and
all its children) terminates.

m Often called ports
m Example: BSD sockets

'__
Public mailboxes

= Owned by the system

= Shared by all the processes having the right to receive messages
through it

m Survive the termination of the process that requested their
creation

m Work best when all processes are on the same machine

m Example: System V UNIX message queues

=
Blocking primitives (l)

= A blocking send does not return until the receiving process has
received the message

0 No buffering is needed

1 Analogous to what is happening when you call somebody who
does not have voice mail

=
Blocking primitives (l)

m A blocking receive does not return until a message has been
received

O Like waiting by the phone for an important message or staying
all day by your mailbox waiting for the mail carrier

- -=EENT

Blocking primitives (I11)

Sender

send(...)

##

receive(...)

Receiver

=
Non-blocking primitives (l)

= A non-blocking send returns as soon as the message has been
accepted for delivery by the OS

1 Assumes that the OS can store the message in a buffer

(1 Like mailing a letter: once the letter is dropped in the mailbox,
we are done

= The mailbox will hold your letter until a postal employee
picks it up

=
Non-blocking primitives (ll)

= A non-blocking receive returns as soon as it has either retrieved
a message or learned that the mailbox is empty

(1 Like checking whether your mail has arrived or not

=

Non-blocking primitives (llI)

Sender

receive(...)
acts as a
retrieve(..)

send(...)

Buffer
msg

Receiver

« -=EENTT
Simulating blocking receives

m Can simulate a blocking receive with a non-blocking receive
Inside a loop:

do {

code = receive(mbox, msg, size);
sleep(1l); // delay

} while (code == EMPTY_MBOX);

= Known as a busy wait
1 Costlier than a blocking wait

« -=EENTT
Simulating blocking sends

= Can simulate a blocking send with two non-blocking sends and a
blocking receive:

1 Sender sends message and requests an acknowledgement
(ACK)

1 Sender waits for ACK from receiver using a blocking receive
1 Receiver sends ACK

m Think certified mail with return receipt requested

'_—
The standard choice

= In general we prefer
O Indirect naming

1 Non-blocking sends
= Sender does not care about what happens once the
message is sent
n Similar to UNIX delayed writes

(1 Blocking receives
= Recelver needs the data to continue

=
Buffering

= Non-blocking primitives require buffering to let OS store
somewhere messages that have been sent but not yet received

= These buffers can have
1 Bounded capacity
= Refuse to receive messages when the buffer is full
1 Theoretically unlimited capacity.

« -=EENNT
An explosive combination ()

m Blocking receive does not go well with direct communication

1 Processes cannot wait for messages from several sources
without using special parallel programming constructs:

n Dijkstra’s alternative command

- -=EENNT
An explosive combination (ll)

m Using blocking receives with direct naming does not allow the
receiving process to receive any messages from any other
process

Q ? P | receive(Q, msg)
X
R X
'S |

- -=EENT
Exception condition handling

= Must specify what to do if one of the two processes dies

(1 Especially important whenever the two processes are on two
different machines

= Must handle
0 Host failures
01 Network partitions

- -=EENT
Quality of service

= When sender and receiver are on different machines, messages
1 Can be lost, corrupted or duplicated
1 Arrive out of sequence

= Can still decide to provide reliable message delivery
(1 Using positive acknowledgments

gie
Positive acknowledgments

= Basic technique for providing reliable delivery of messages

m Destination process sends an acknowledgment message (ACK)
for every message that was correctly delivered

1 Damaged messages are ignored

m Sender resends any message that has not been acknowledged
within a fixed time frame

'2,lllllllllll
First scenario

Sender

Sends message

ﬁ

Sends ACK

_

Receiver

gie

Second scenario

Sender

Sends message

—pt

Message is lost:
no ACK is sent

Resends message

ﬁ

Receiver

gis
Third scenario ()

Sends message

—

Sends ACK

Sender h Receiver

ACK is lost
Resends message

—

“ -=EENT
Third scenario (ll)

m Receiver must acknowledge a second time the message
1 Otherwise it would be resent one more time

m Ruleis

1 Acknowledge any message that does not need to be
resent!

'_—
Classes of service

m Datagrams:
1 Messages are send one at time

m Virtual circuits:
1 Ordered sequence of messages
1 Connection-oriented service

m Streams:
1 Ordered sequence of bytes
1 Message boundaries are ignored

= SN

Chapter overview

m Types of IPC
O Message passing
0O Shared memory
= Message passing
O Blocking/non-blocking, ...
0 Datagrams, virtual circuits, streams
1 Remote procedure calls

- -=EENT
Datagrams

m Each message is sent individually

= Some messages can be lost, other duplicated or arrive out of
sequence

m Equivalent of a conventional letter

m Reliable datagrams:
resent until they are acknowledged

m Unreliable datagrams

=
Unreliable datagrams (l)

= Messages are not acknowledged
m Works well when message requests a reply
1 Reply is implicit ACK of message

Sends request

—
Client < Server

Sends reply

(and ACKs the request)

"
Unreliable datagrams (ll)

= Exactly what we do in real life:
0 We rarely ACK emails and other messages
00 We reply to them!

m Sole reason to ACK a request is when it might take a long time to
reply to it

= S
UDP

m User Datagram Protocol
m Best known datagram protocol
m Provides an unreliable datagram service
1 Messages can be lost, duplicated or arrive out of sequence
= Best for short interactions
0 Request and reply fit in single messages.

=
Virtual circuits (I)

m Establish a logical connection between the sender and the
receiver

m Messages are guaranteed to arrive in sequence without lost
messages or duplicated messages

[0 Same as the words of a phone conversation

=
Virtual circuits (Il)

= Require setting up a virtual connection before sending any data
1 Costlier than datagrams

= Best for transmitting large amounts of data that require sending
several messages

1 File transfer protocol (FTP)
O Hypertext transfer protocol (HTTP)

'_—
Streams

m Like virtual circuits

= Do not preserve message boundaries:
[1 Receiver sees a seamless stream of bytes

m Offspring of UNIX philosophy
0 Record boundaries do not count
= Ignore them

1 Message boundaries should not count
= Ignore them

= SN
TCP

m Transmission Control Protocol

m Best known stream protocol

m Provides a reliable stream service
= Said to be heavyweight

1 Requires three messages (packets) to establish a virtual
connection

g

Datagrams and Streams

m Datagrams:

1 Unreliable

1 Not ordered

01 Lightweight

1 Deliver messages
m Example:

0 UDP

m Streams:

1 Reliable

1 Ordered

1 Heavyweight

(1 Deliver byte streams
= Example:

O TCP

= SEE—
UDP Joke

“Hello, | would like to tell you a UDP joke

but | am afraid you will not get it”

= S
TCP Joke

"Hi, I'd like to hear a TCP joke."

"Hello, would you like to hear a TCP joke?"
"Yes, I'd like to hear a TCP joke."

"OK, I'll tell you a TCP joke."

"Ok, | will hear a TCP joke."

"Are you ready to hear a TCP joke?"

"Yes, | am ready to hear a TCP joke."

"Ok, | am about to send the TCP joke. It will last 10
seconds, it has two characters, it does not have a
setting, it ends with a punchline.”

"Ok, | am ready to get your TCP joke that will last 10
seconds, has two characters, does not have an explicit
setting, and ends with a punchline."

"I'm sorry, your connection has timed out.

...Hello, would you like to hear a TCP joke?"

Remote Procedure Calls

- -=EENNT
Motivation (1)

= Apply to client-server model of computation

m A typical client-server interaction:

send_req(args); rcv_req(&args);
process(args, &results);
send _reply(results);
rcv_reply(&results);

= SN
Motivation (ll)

= Very similar to a conventional procedure call:

= xyz(args, &r'esults)'» xyz(...) {
\r‘etur‘n;
} 1/ xyz

m Try to use the same formalism

= SN
The big idea

m We could write

rpc(xyz, args, &PESUIQXW(”.) {
return;
} /] xyz

and let the system take care of all message passing details

« -=EENNT
Advantages

= Hides all details of message passing
1 Programmers can focus on the logic of their applications

= Provides a higher level of abstraction

= Extends a well-known model of programming

0 Anybody that can use procedures and function can quickly
learn to use remote procedure calls

- -=EENNT
Disadvantage

m The illusion is not perfect
1 RPCs do not always behave like regular procedure calls
= Client and server do not share the same address space

= Programmer must remain aware of these subtle and not so subtle
differences

"
General Organization

(system generated)

User Server
Program Stub

* calls * calls

User Server

Stub Procedure

(system generated)

g

What the programmer sees

User
Program

All IPC between
client and server
are hidden

Does a RPC

Server
Procedure

= SEE—

The user program

= Contains the user code
m Calls the user stub

rpc(xyz, args, &results);
m Appears to call the server procedure

'__
The user stub

= Procedure generated by RPC package:

1 Packs arguments into request message and performs required
data conversions
(argument marshaling)

[0 Sends request message
1 Waits for server's reply message

0 Unpacks results and performs required data conversions
(argument unmarshaling)

'_—
The server stub

m Generic server generated by RPC package:
1 Waits for client requests

1 Unpacks request arguments and performs required data
conversions

1 Calls appropriate server procedure

1 Packs results into reply message and performs required data
conversions

1 Sends reply message

= SN

The server procedure

m Procedure called by the server stub
= Written by the user
m Does the actual processing of user requests

« -=EENNT
Differences with regular PC

= Client and server do not share a common address space
1 Two different processes with different address spaces

m Client and server can be on different machines

= Must handle partial failures

“ -=EENT
No common address space

= This means
1 No global variables

1 Cannot pass addresses
= Cannot pass arguments by reference
= Cannot pass dynamic data structures through pointers

'_—
The solution

m RPC can pass arguments by value and result

1 Pass the current value of the argument to the remote
procedure

1 Copy the returned value in the user program

= Not the same as passing arguments by reference

- -=EENT

Passing by reference

Caller:

i = 0;

variable i

abc (&i) 3—

/

Procedure abc() will
directly increment

abc(int *k){
(*k)++;

" <M
Passing by value and result

Variable i is updated
Caller: after caller receives
server’s reply

L= e i=0

abc(&i); _>abc(int *k){
00 [(*k)++3
1 =1
i _}

=
An example (I)

m Procedure doubleincrement

doubleincrement(int *p,int *q) {

(*p)++ 5 (*q)++ ;
} // doubleincrement

= Calling
doubleincrement (&m, &m);

should increment m twice

=
An example (ll)

= Calling
doubleincrement(&m, &m);
passing arguments by value and return only increments m once

m Let us consider the code fragment
int m = 1;
doubleincrement(&m, &m);

= SN

Passing by reference

Caller:

int m = 1;
doubleincrement (&m,&m);

= SN

Passing by value and result

Caller:
int m = 1;

doubleincrement (&m,&m); .

m -

“ -=EENT
Passing dynamic types (I)

= Cannot pass dynamic data structures through pointers
1 Must send a copy of data structure

m For alinked list

0 Send array with elements of linked list plus unpacking
instructions

« -=EENNT
Passing dynamic types (ll)

= We want to pass

Al>[Bl>[c}+[D}>NIL

m We send to the remote procedure

LL||4(A||B|C|D

= Header identifies linked list (LL) with four elements (4)

The NYC Cloisters

Rebuilt in NYC from actual cloister stones

'__
Architecture considerations

® The machine representations of floating point numbers and byte
ordering conventions can be different:

0 Little-endians start with least significant byte:
n Intel's 80x86 , AMDG4 / x86-64

01 Big-endians start with most significant byte:
s /IBM z and OpenRISC

= E—
If you really want to know

= Big-endians 4-byte integer

o0 01 10 11

= Ljttle-endians 4-byte integer

11 10 01 00

'_—
The solution

m Define a network order and convert all numerical variables to
that network order

1 Use hton family of functions

1 Same as requiring all air traffic control communications to be in
English

0 If you want to know, the network order is big-endian

g
Detecting partial failures

m The client must detect server failures

1 Can send are you alive? messages to the server at fixed time
intervals

1 That is not hard!

= CEm—
Handling partial executions

= Client must deal with the possibility that the server could have
crashed after having partially executed the request

1 ATM machine calling the bank computer
= \Was the account debited or not?

« -=EENNT
First solution (I)

m Ignore the problem and always resubmit requests that have not
been answered

1 Some requests may be executed more than once

= Will work if all requests are idempotent

[0 Executing them several times has the same effect as executing
them exactly once

« -=EENTT
First solution (l)

= Examples of idempotent requests include:
1 Reading n bytes from a fixed location
= NOT reading next n bytes
1 Writing n bytes starting at a fixed location
x NOT writing n bytes starting at current location

m Technique is used by all RPCs in the Sun Microsystems’ Network
File System (NFS)

'_—
Second solution

m Attach to each request a serial number

1 Server can detect replays of requests it has previously
received and refuse to execute them

1At most once semantics

= Cheap but not perfect
1 Some requests could end being partially executed

= CEm—
Third solution

m Use a transaction mechanism

1 Guarantees that each request will either be fully executed or
have no effect

1 All or nothing semantics
m Best and costliest solution

m Use it in all financial transactions

= Em——
An example

= Buying a house using mortgage money
1 Cannot get the mortgage without having a title to the house
1 Cannot get title without paying first previous owners
1 Must have the mortgage money to pay them

m Sale is a complex atomic transaction

g

'_—
Realizations (1) ==

= Sun RPC:
1 Developed by Sun Microsystems
1 Used to implement their Network File System

m MUSRPC (Microsoft RPC):
1 Proprietary version of the DCE/RPC protocol

1 Was used in the Distributed Component Object Model
(DCOM).

'_—
Realizations (II) ==

m SOAP:
1 Exchanges XML-based messages
0 Runs on the top of HTTP
= Very portable
= Very verbose

= JSON-RPC:
1 Uses JavaScript Object Notation (JSON)

