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Chapter overview

◼ The critical section problem

◼ Purely software solutions

◼ Spin locks

 Intel realization

◼ Semaphores

◼ Classical synchronization problems

◼ Monitors

◼ Advanced pthread synchronization



Shared Memory

◼ Name says it 

 Two or more processes share a part of their address space

Process P

Process Q

same



Shared files

◼ Two processes access the same file at the same time 

Process P

Process Q

File f



The outcome

◼ We can expect incorrect results whenever two processes (or two 

threads of a process) modify the same data at the same time



First example (I)

◼ Bank Account Management

 Each account has a balance

 One process tries to credit an account

 Another process tries to debit the same account



The credit function

do_credit(int account, float amount) {

float balance;

fp = fopen(...); // open file

fseek(fp, ...); // locate account

fscanf(fp,"%f", &balance); // read balance

balance += amount; // update balance

fseek(fp, ...); // go back to account

fprintf(fp,"%f", balance); //  save result

} // do_credit

A

B



The debit function

do_debit(int account, float amount) {

float balance;

fp = fopen(...); // open file

fseek(fp, ...); // locate account

fscanf(fp,"%f", &balance); // read balance

balance -= amount; // update balance

fseek(fp, ...); // go back to account

fprintf(fp,"%f", balance); // save result

} // do_debit

C

D



First example (II)

◼ Assuming

 Balance is $500

 Amount to be credited is $3000

 Amount to be debited  is $100

◼ Sole correct value for final balance is $3400

◼ We can also get $3500 and $400!

 Everything depends on ordering of reads and writes 



Explanation (I)

◼ Correct result is guaranteed if the two processes access the data 

one after the other

 I/Os are done in the order

◼ A, B then C, D 

◼ C, D then A, B

 Final balance will be $3400



Explanation (II)

◼ Account will not be credited if both functions read the old value of 

the balance and the debit function updates the file last

 Disk accesses are done in the order

◼ A, C then B, D 

◼ C, A then B, D

 Final balance will be $400



Explanation (III)

◼ Account will not be debited if both functions read the old value of 

the balance and the credit function updates the file last

 Disk accesses are done in the order

◼ A, C then D, B 

◼ C, A then D, B

 Final balance will be $3500



The problem

◼ We have a race condition

 Outcome of concurrent execution of the processes will depend 

on process speeds

◼ We will observe irreproducible errors

 Hard to detect and debug



The solution

◼ Define critical sections in the two functions

◼ Control access to critical sections



The credit function

do_credit(int account, float amount) {

float balance;

fp = fopen(...); // open file

fseek(fp,...); // locate account 

fscanf(fp,"%f", &balance); // read balance

balance += amount; // update balance

fseek(fp,...); // go back to account

fprintf(fp,"%f", balance); //  save result

} // do_credit



The debit function

do_debit(int account, float amount) {

float balance;

fp = fopen(...); // open file

fseek(fp,...); // locate account

fscanf(fp, %f", &balance); // read balance

balance -= amount; // update balance

fseek(fp,...); // go back to account

fprintf(fp,"%f", balance); // save result

} // do_debit



Second example (I)

◼ Most text editors and word processors do not update directly the 

files on which they operate

 Create a temporary tempFile

 Modify the original file when the user issues a save command 

◼ What will happen if two users edit the same file at the same 

time?



Second example (II)

Time

F'

Alice saves first

Bob saves last:

Alice’s work is lost!

F F'

F''

F''



The problem

◼ Another race condition

 Should never have two users/processes updating the same file 

at the same time

◼ Don’t let other people edit our files

 Send them a copy!



A real race condition

◼ Pthread program creating a child thread

◼ Set a global counter to 0

◼ Both parent and child add one to counter 100,000 times

◼ When both are done, final counter  value is 200,000

 Right?



Realrace.cpp  (I)

◼ #include <iostream>
#include <pthread.h>
using namespace std;

◼ //Shared counter
static int counter = 0;



Realrace.cpp  (II)

◼ // The thread function
void *child_fn(void *arg) {

int i,  ntimes;
ntimes = (int) arg;
for (i = 0; i < ntimes ; i++) {

counter++;
} // for

} // child_thread



Realrace.cpp  (III)

◼ void main() {
pthread_t tid;
int ntimes =100000;
int i = 0;

pthread_create(&tid, NULL, child_fn,
(void *) ntimes);



Realrace.cpp  (IV)

◼ for (i = 0; i < ntimes ; i++) {
counter++;

} // for
pthread_join(tid, NULL);
cout << "Final value of counter: " << counter

<< endl ;
} // main



The outcome

◼ Final value of counter is smaller than 200,000

◼ Frequent race conditions result in conflicting increments

 Both parent and child access the same  counter

 Increment it  twice



Searching for a solution

◼ Three approaches

 Disabling interrupts

 Enforcing mutual exclusion

 Using an atomic transaction mechanism



Disabling interrupts

◼ Very dangerous solution for user programs

◼ Was sometimes used for very short critical sections in the kernel

◼ Does not work for multithreaded kernels running on 

multiprocessor architectures. 



Enforcing mutual exclusion

◼ Portions of code where the shared data are read and modified are 

defined as critical sections

◼ Must guarantee that we will never have more than only one 

process  in a critical section for the same shared data 

◼ Works best with short critical regions

◼ Preferred solution



Norace.cpp  (I)

◼ #include <iostream>
#include <pthread.h>
using namespace std;

◼ //Shared counter and shared lock
static int counter = 0;
static pthread_mutex_t lock;



Norace.cpp  (II)

◼ // The thread function
void *child_fn(void *arg) {

int i, ntimes;
ntimes = (int) arg;
for ( i = 0; i < ntimes ; i++) {

pthread_mutex_lock(&lock);
counter++;

pthread_mutex_unlock(&lock);
} // for

} // child_thread



Norace.cpp  (III)

◼ void main() {
pthread_t tid;
int ntimes =100000;
int i = 0;
// Create the lock
pthread_mutex_init(&lock, NULL);
// Create the thread
pthread_create(&tid, NULL, child_fn,

(void *) ntimes);



Norace.cpp  (IV)

◼ for (i = 0; i < ntimes ; i++) {
pthread_mutex_lock(&lock);

counter++;
pthread_mutex_unlock(&lock);

} // for

pthread_join(tid, NULL);
cout << "Final value of counter: " << counter

<< endl;
} // main



The outcome

◼ Program is much slower

◼ Gets the expected result



Using atomic transactions

◼ Will allow several processes to access the same shared data 

without interfering with each other

◼ Preferred solution for database access since 

 Most databases are shared 

 Their critical sections can be very long as they often involve a 

large number of disk accesses



Criteria to satisfy (I)

◼ Any solution to the critical section problem should satisfy the

four following criteria

1. No two processes may be simultaneously into their critical 

sections for the same shared data

We want to enforce mutual exclusion



Criteria to satisfy (II)

2. No assumptions should be made about the speeds at which 

the processes will execute.

The solution should be general:

the actual speeds at which processes complete are often 

impossible to predict because running processes can be 

interrupted at any time! 



Criteria to satisfy (III)

3. No process should be prevented to enter its critical section 

when no other process is inside its own critical section for the 

same shared data

Should not prevent access to the shared data when it is not 

necessary.



Criteria to satisfy (IV)

4. No process should have to wait forever to enter a critical 

section

Solution should not cause starvation



My mnemonics

◼ Solution should provide

1. Mutual exclusion

2. All the mutual exclusion

3. Nothing but mutual exclusion

4. No starvation



Solutions

◼ Five approaches

 Pure software

◼ Peterson’s Algorithm

 Spin locks

◼ Use xchg instruction

 Semaphores

 Monitors

 Locks and condition variables



Pure software solutions



Pure Software Solutions

◼ Make no assumption about the hardware

 Peterson’s Algorithm

 Easier to understand than Dekker’s algorithm

◼ Original solution       



A bad solution (I)

#define LOCKED 1
#define UNLOCKED 0
int lock = UNLOCKED; // shared
// Start busy wait
while (lock == LOCKED);
lock = LOCKED;

Critical_Section(…);
// Leave critical section
lock = UNLOCKED;



A bad solution (II)

◼ Solution fails if two or more processes reach the critical section in 

lockstep when the critical section is UNLOCKED

 Will both exit the busy wait

 Will both set Lock variable to LOCKED

 Will both enter the critical section at the same time

◼ Which condition does this solution violate?



Examples (I)

◼ You live in a dorm

 Go to the showers

 Find a free stall

 Return to your room to bring your shampoo

 Get into the free stall  and find  it occupied!



Examples (II)

◼ You see a free parking spot

◼ Move towards it

◼ Do not see another car whose driver did not see you



A bad solution (III)

◼ Solution violates  second condition

 Does not always guarantee mutual exclusion 



Other bad solutions

◼ People have tried plenty of bad solutions



Peterson Algorithm (I)

◼ Simplest case 

 Two processes

 Process IDs are 0 and 1

◼ Philosophy is

 Grab a  lock for CS before checking that CS is free

 Use a tie-breaker to handle conflicts



Peterson Algorithm (II)

#define F 0
#define T 1
// shared variables
int reserved[2] = {F, F};
int mustWait; // tiebreaker



Peterson Algorithm (III)

void enter_region(int pid) {
int other; //other process
other = 1 - pid;
reserved[pid] = T;
// set tiebraker
mustWait = pid;
while (reserved[other]&&
mustWait==pid);

} // enter_region



Peterson Algorithm (IV)

void leave_region(int pid) {
reserved[pid] = F;

} // leave_region



Peterson Algorithm (V)

◼ Essential part of algorithm is

reserved[pid] = T;
mustWait = pid;
while reserved[other]&&
mustWait==pid);

◼ When two processes arrive in lockstep,

last one will wait



Spin locks



Spin locks 

◼ These solutions use special instructions to achieve an atomic 

test and set:

 Putting the lock testing and the lock setting functions into a 

single instruction  makes the two steps atomic

◼ Cannot be separated by an interrupt



The exchange instruction (I)

◼ We assume the existence of a shared  lock variable

int lockvar = 0; // shared

◼ Will only have two possible values

 0 meaning nobody is inside the critical section

 1 meaning somebody has entered the critical section



The exchange instruction (II)

◼ We introduce an atomic instruction

exch register, lockvar

 swaps contents of register and lockvar



How we use it

◼ We set register to one before doing

exch register, lockvar

◼ What will be the outcome?

?

register

1

lockvar



The two possible outcomes (I)

◼ If register == 1
 lockvar was already set to 1

 We cannot enter the critical section

 We must retry

◼ If register == 0
 lockvar was equal  to 0 

 We have successfully set it to 1

 We have  entered the critical section



Before the exchange

◼ We do not know the state of lockvar

◼ Could be

 Unlocked and free to grab?

 Locked and in use by another process?

Register

?

Lockvar



After the exchange (I) 

◼ The lock was already locked

◼ Attempt failed

◼ Must retry

Register Lockvar



After the exchange (II) 

◼ Lockvar was unlocked

◼ It is now locked

 We succeeded!

◼ Can enter the critical region

Register Lockvar



Entering a critical region

◼ To enter a critical region, repeat exchange until it succeeds

do {
exchange(int *pregister,int &plockvar)
// pregister points to register
// plockvar points to lock var

} while (*pregister == 1);



Leaving a critical section

◼ To leave a critical region, do

*plockvar = 0;



The x86 xchg instruction

◼ xchg op1, op2

 Exchanges values of two operands

 Always atomic (implicit lock prefix) if one of the operands is a 

memory address 

◼ xchg %eax, lockvar



How to use it

◼ enter_region:
movl 1, %eax # set to one
xchg %eax, lockvar
test %eax, %eax
jnz enter_region # try again

◼ leave_region:
movl 0, %eax # reset to zero
xchg %eax, lockvar



Same code in MASM

◼ enter_region:
movl eax, 1 ; set to one
xchg eax, [lockvar]
test eax, eax
jnz enter_region ; try again

◼ leave_region:
movl eax, 0 ; reset to zero
xchg eax, [lockvar]



Underlying assumptions

◼ Peterson's algorithm and spinlocks assume that

 Instructions execute in sequence 

 Instructions execute in an atomic fashion

◼ Less and less true in modern CPU architectures

 Intel x86 architecture has an instruction prefix lock making any 
instruction writing into memory atomic

◼ lock  movl 1, lockvar



The bad news

◼ Peterson's algorithm and spinlocks rely on busy waits.

◼ Busy waits waste CPU cycles:

 Generate unnecessary context switches on single processor 

architectures 

 Slow down the progress of other processes



Priority inversion

◼ A high priority process doing a busy wait may prevent a lower 

priority process to do its work and leave its critical region.

 Think about a difficult boss calling you every two or three 

minutes to ask you about the status of the report you are 

working on



In conclusion (I)

◼ We had to avoid busy waits on single-core architectures

◼ We can use them only for short waits on multicore 

architectures



In conclusion (II)

◼ Several operating systems for multiprocessor architectures offer 

two different mutual exclusion mechanisms:

 Busy waits for very short waits

◼ Spinlocks

 Putting the waiting process in the  blocked state until the 

resource becomes free for longer waits



In conclusion (III)

◼ Like waiting for a table in a restaurant: 

 If we are promised a very short wait, we will wait there

 Otherwise, we might prefer to go for a walk (especially if it is a 

beach restaurant) or have a drink at the bar



Semaphores



Semaphores

◼ Introduced in 1965 by E. Dijkstra 

◼ Semaphores are special integer variables that can be initialized to 

any value  0 and can only be manipulated through two atomic 

operations: P( ) and V( )

◼ Also called wait() and signal()

 Best to  reserve these two names for operations on conditions

in monitors.



The P( ) operation

◼ If semaphore value is  zero,

 Wait until value become positive

◼ Once value of semaphore is greater than zero, 

 Decrement it 



The V( ) operation

◼ Increment the value of the semaphore



How they work

◼ The normal implementation of semaphores is through system 

calls:

 Busy waits are eliminated

 Processes waiting for a semaphore whose value is zero are 

put in the blocked state



An analogy

◼ Paula and Victor work in a restaurant:

◼ Paula handles customer arrivals:

 Prevents people from entering the restaurant when all tables 

are busy.

◼ Victor handles departures

 Notifies people waiting for a table when one becomes available



An analogy (II)

◼ The semaphore represents the number of available tables

 Initialized with the total number of tables in restaurant



An analogy (III)

Paula

Victor

Bar



An analogy (IV)

◼ When people  come to the restaurant, they wait for Paula to direct 

them:

 If a table is available, she let them in and decrements the table 

count

 Otherwise, she directs them to the bar



An analogy (V)

X

X

X

X

Paula

Victor

Bar



An analogy (VI)

◼ When people leave, they tell Victor:

 Victor increments the semaphore and checks the waiting area: 

 If there is anyone in there, he lets one group in and 

decrements the semaphore

◼ Paula and Victor have worked long enough together and don't 

interfere with each other



Two problems

◼ What if somebody sneaks in the restaurant and bypasses 

Paula?

 Paula will let a group of people in when all tables are busy.

◼ What if people forget to tell Victor they are leaving?

 Their table will never be reassigned.



Implementation (I)

◼ To avoid busy waits, we will implement semaphores as kernel 

objects

◼ Each semaphore will have a value and an associated queue.

◼ New system calls:
 sem_create( )
 sem_P( ):
 sem_V( )
 sem_destroy( )



Implementation (II)

◼ sem_create( ):

 Creates a semaphore and initializes it

◼ sem_destroy( ):

 Destroys a semaphore



Implementation (III)

◼ sem_P( ):

 If the semaphore value is greater than zero, the kernel 

decrements it by one and lets the calling process continue.

 Otherwise the kernel puts the calling process in the waiting 

state and stores its process-id in the semaphore queue.



Implementation (IV)

◼ sem_V( ):

 If the semaphore queue is not empty, the kernel selects one 

process from the queue and puts it in the ready queue

 Otherwise, the kernel increments by one the semaphore 

value



Binary semaphores

◼ Their value can only be zero or one

◼ Mostly used to provide mutual exclusion

◼ Semantics of P( ) operations not affected

◼ V( ) now sets semaphore value to one



Mutual Exclusion (I)

◼ Assign one semaphore to each group of data that constitutes a  

critical section

◼ Initial value of semaphore must be one:

semaphore mutex = 1;



Mutual exclusion (II)

◼ Before entering a  critical region, processes must do:

 P(&mutex);

 Wait until critical region becomes free

◼ Processes leaving a critical region must do 

 V(&mutex);

 Signal the process is leaving the critical section



Making a process wait

◼ The initial value of semaphore must be zero.

semaphore waitforme = 0;

◼ Process that needs to wait for another process does:

sem_P(&waitforme);

◼ When the other process is ready, it will do:

sem_V(&waitforme);



Example (I)

◼ Alice has promised to take her friends to the beach in her new car

◼ Everybody will meet on campus in front of the University Center

◼ Her three friends are Beth, Carol and Donna



Example (II)

◼ We will have three semaphores

semaphore beth_is_there = 0;
semaphore carol_is_there = 0;
semaphore donna_is_there = 0;

◼ There are all initialized to zero



Example (III)

◼ Alice will do

sem_P(&Beth_is_there);

sem_P(&Carol_is_there);

sem_P(&Donna_is_there);



Example (IV)

◼ When her friends arrive, they will do

sem_V(&Beth_is_there);

sem_V(&Carol_is_there);

sem_V(&Donna_is_there);



Example (V)

◼ Our solution assumes that Alice will definitively be the first to 

arrive 

 Her friends will never have to wait for her

◼ If this is not the case, we need to force everyone to wait for 

everyone



Setting up a rendezvous (I)

◼ To force two processes to wait for each other, we need two 

semaphores both initialized at zero

semaphore waitforfirst = 0;
semaphore waitforsecond = 0;



Setting up a rendezvous (II)

◼ When the first process is ready, it  will do

sem_V(&waitforfirst);
sem_P(&waitforsecond);

◼ When the second process is ready, it  will do

sem_V(&waitforsecond);
sem_P(&waitforfirst);



Setting up a rendezvous (III)

◼ What will happen if the first process does

sem_P(&waitforsecond);
sem_V(&waitforfirst);

and the second process does

sem_P(&waitforfirst);
sem_V(&waitforsecond);



Setting up a rendezvous (IV)

◼ We will have a deadlock



Advantages of semaphores (I)

◼ Semaphores are machine-independent

◼ They are simple but very general

◼ They work with any number of processes

◼ We can have as many critical regions as we want by assigning a 

different semaphore to each critical region



Advantages of semaphores (II)

◼ We can use semaphores for synchronizing processes in an 

arbitrary fashion

◼ The key idea is layering:

 Pick a powerful and flexible mechanism that apply to many 

problems 

 Build later better user interfaces



Implementations



Implementations

◼ UNIX has three noteworthy implementations of semaphores:

 The old System V semaphores 

◼ Now obsolete 

 The newer POSIX semaphores

◼ For reference only 

 The Pthread semaphores

◼ For reference only 



Overview

◼ Six operations:

 sem_open()

 sem_wait()

 sem_post()

 sem_getvalue()

 sem_close()

 sem_unlink()

Will focus on named POSIX

semaphores

“named” means here having

a global system-wide name



Sem_open()

◼ Sole non-trivial call

 Works like open() with O_CREAT option

◼ Accesses the named semaphore

◼ Creates it if and only if it did not already exist

WARNING:

If you are debugging a program

that has crashed, sem_open will not reinitialize

any semaphore that has survived the crash



Sem_open syntax

◼ sem_t *mysem;
char name[] = "Sem Name";
unsigned int initial_value;
mysem = sem_open(name,

O_CREAT, 0600,
initial_value);

0600 prevents other users from

accessing the new semaphore



Semaphore names

◼ Semaphores appear in the file system in subdirectory of 
/dev/shm

 Names prefixed with "sem."

◼ Can be removed just like regular files using "rm"

◼ The names of the semaphores you are using must be unique

 All stored in a system wide directory



A source of troubles

◼ sem_open(…) does not change the value of an existing 

semaphore

 initial_value is only used if the semaphore did not already 

exist

◼ Must be sure that all your semaphores have been deleted before 

restarting your program

 ls /dev/shm/sem.*



Sem_wait() and sem_post()

◼ sem_t *mysem;
sem_wait(mysem);

 Implements the sem_P() operation

◼ sem_t *mysem;
sem_post(mysem);

 Implements the sem_V() operation



Sem_getvalue()

◼ Can test at any time the value of any opened semaphore:

sem_t *mysem;

int value;
sem_getvalue(mysem,&value);

◼ Non-standard feature of POSIX semaphores



Sem_close() 

◼ sem_t *mysem;
sem_close(mysem);

 Closes the semaphore

(without changing its value)



Sem_unlink()

◼ char name[];
sem_unlink(name);

 Removes the semaphore unless it is accessed by another 

process

◼ That process will still be able to access the semaphore until 

it closes it



Pthread synchronization

◼ Pthreads offer three synchronization primitives

 POSIX semaphores

◼ Can use private semaphores

 Unnamed

 Mutexes

 Condition variables

For reference only



Unnamed semaphores (I)

◼ Have no system-wide name in /dev/shm

◼ Work like regular POSIX semaphores but for creation and deletion

 sem_init() and sem_destroy()

◼ Given a regular variable name

◼ To remain visible to all users, variable must be declared

 Static if only shared by pthreads

 In a shared memory segment if shared by processes



Unnamed semaphores (II)

◼ Creating a semaphore

 static sem_t sem;
int sem_init(sem_t *sem, int pshared,

unsigned initial_value);

 If pshared is 0

◼ Semaphore is only shared by the threads within the 
process

◼ Otherwise it can be shared with other processes 



Mutexes

◼ Built-in mutexes

 static pthread_mutex_t name;

 pthread_mutex_init(&name, NULL);

 pthread_mutex_lock(&name);

 pthread_mutex_unlock(&name);

◼ Mutexes are always initialized to one

 As they should



Mutexes and binary semaphores

Binary semaphores

◼ Can only have

two values

◼ Any process can

lock or unlock a binary 

semaphore

Great for rendez-vous

Mutexes

◼ Can only have

two values

◼ A mutex can only be 

unlocked by the thread that 

locked it

Less general



Classical synchronization 

problems



What are they?

◼ Will cover three problems

 Bounded buffer

 Readers and writers

 Dining philosophers

◼ Will mention but not cover

 Sleeping barber



Bounded buffer (I)

◼ One or more producer processes put their output in a bounded 

buffer

 Must wait when buffer is full

◼ One or more consumer processes take items from the buffer

 Must wait when buffer is empty



Bounded buffer (II)

Producer

Producer

Consumer

Consumer

Consumer



The three rules

◼ Producers cannot put items in the buffer when it is full

◼ Consumers cannot take items from the buffer when it is empty

◼ Producers and consumers must access the buffer one at a time



Two analogies

◼ The supermarket

 Supermarket is the buffer

 We are the consumers

 Suppliers are the producers

◼ Our garbage

 Our garbage can is the buffer

 We are the producers

 Garbage truck is the consumer



The solution

◼ Declarations

#define NSLOTS ... // size
semaphore mutex = 1;
semaphore notFull = NSLOTS;
semaphore notEmpty = 0;



The functions

◼ producer() { consumer() {
struct x item; struct x item;
for (;;) { for (;;) {

produce(&item); sem_P(&notEmpty);
sem_P(&notFull); sem_P(&mutex);
sem_P(&mutex); take(item);
put(item); sem_V(&mutex);
sem_V(&mutex); sem_V(&notFull);
sem_V(&notEmpty); consume(item);

} // for } // for

} // producer } // consumer



A bad solution

◼ producer() { consumer() {
struct x item; struct x item;
for (;;) { for (;;) {

produce(&item);        sem_P(&mutex);
sem_P(&notFull);        sem_P(&notEmpty);
sem_P(&mutex); take(item);
put(item); sem_V(&mutex);
sem_V(&mutex); sem_V(&notFull);
sem_V(&notEmpty); consume(item);

} // for } // for

} // producer } // consumer



Order matters

◼ The order of the two P( ) operations is very important

 Neither the producer or the consumer should request exclusive 

access to the buffer before being sure they can perform the 

operation they have to perform

◼ The order of the two V( ) operations does not matter



The readers-writers problem (I)

◼ We have a file (or a database) and two types of processes:

 Readers that need to access the file 

 Writers that need to update it.

◼ A real problem



The readers-writers problem (II)

◼ Readers must be prevented from accessing the file while a writer 

updates it.

◼ Writers must be prevented from accessing the file while any other 

process accesses it

 They require mutual exclusion



An analogy

◼ Sharing a classroom between teachers and students

 Teachers use it to lecture

◼ They cannot share the room

 Students use it for quiet study

◼ They can share the room with other students

◼ Classroom is assumed to be in use if the light is turned on



Rules for teachers

◼ Do not enter a classroom if its light is turned on

◼ Otherwise

 Turn the light on when you come in

 Turn the light off when you leave



Rules for students

◼ If the light is on and you see students but no teacher

 Enter the room 

◼ If the light is off, you are the first student to enter the room

 Turn the light on and enter the room

◼ If you are the last student to leave the room

 Turn the light off after leaving



The readers-writers problem (III)

◼ Shared variables and semaphores

int readersCount = 0;
semaphore mutex = 1;
semaphore access = 1;



The readers-writers problem (IV)

write_to_file() {
P(&access);

. . .
V(&access);

} // write_to_file



The readers-writers problem (V)

read_the_file(){
readersCount++;
if(readersCount == 1)

sem_P(&access);
. . .

readersCount--;
if(readersCount == 0)

sem_V(&access);
} // read_the_file

TENTATIVE

SOLUTION



Classrooms with two doors

◼ What if two students enter in lockstep using different doors?

 Second will think he is the first to enter the room

 Will see the light on and not enter

◼ What if two students leave in lockstep using different doors?

 Neither of them will notice they are the last ones to leave

 Neither will turn the light off



The readers-writers problem (VI)

read_the_file(){
sem_P(&mutex);
readersCount++;
if(readersCount == 1)

sem_P(&access);
sem_V(&mutex);
. . .



The readers-writers problem (VII)

sem_P(&mutex);
readersCount--;
if(readersCount == 0)

sem_V(&access);
sem_V(&mutex);

} // read_the_file



Starvation

◼ Solution favors the readers over the writers 

 A continuous stream of incoming readers could block writers 

forever 

◼ Result would be writers' starvation.



The dining philosophers (I)

◼ Five philosophers sit at a table. They spend their time thinking 

about the world and eating spaghetti

 The problem is that there are only five forks.

 If all five philosophers pick their left forks at the same time, a 

deadlock will occur



Food

The table layout



The dining philosophers (II)

#define N 5

semaphore mutex = 1;



The dining philosophers (III)

philosopher(int i) {
for (;;) {

think();
take_fork(i); // left before
take_fork((i+1)%N); // right
eat();
put_fork(i);
put_fork((i+1)%N);

} // for loop
} // philosopher



Avoiding the deadlock

philosopher(int i) {
for (;;) {

think();
if (i == 0) {

take_fork((i+1)%N); // right
take_fork(i); // before left

} else {
take_fork(i); // left before 
take_fork((i+1)%N); // right

} // if-else
…

} // for loop
} // philosopher



The dining philosophers (IV)

◼ To break the deadlock, we force one of the philosophers to grab 

their right fork before their left fork

◼ The main interest of this problem is that it belongs to the 

operating system folklore



The dining philosophers (V)



The sleeping barber (I)

◼ Proposed by Andrew Tanenbaum in his textbook Modern 

Operating Systems.

 Not covered it in class.

 Shows how to track the value of a semaphore using a global 

variable.



The sleeping barber (II)

◼ A barber shop has several chairs for waiting customers and one 

barber who sleeps when there are no customers.

◼ Customers don't wait if the shop is full and there are no free chairs 

to sit upon.

 Must keep track of the number of customers in the shop



Global declarations

◼ #define NCHAIRS 4
// number of chairs
semaphore mutex = 1; semaphore ready_barber = 0;
semaphore waiting_customers = 0;
int nwaiting = 0; 
// tracks value of waiting_customers



The barber function

◼ barber() {
for(;;) {

sem_P(&waiting_customers);
sem_P(&mutex);
nwaiting--;
sem_V(&ready_barber);
sem_V(&mutex);
cut_hair();

} // for
} // barber



The customer function

◼ customer() {
P(&mutex);
if (nwaiting < NCHAIRS) {

nwaiting++;
sem_V(&waiting_customers);
V(&mutex);
sem_P(&ready_barber);
get_haircut();

} // if
sem_V(&mutex);

} // customer



Limitation of semaphores

◼ Semaphore are a low level construct:

Deadlocks will occur if V() calls are forgotten

Mutual exclusion is not guaranteed if P() calls are forgotten

◼ Same situation as FORTRAN if and goto compared to more 

structured constructs



A better solution

◼ We need a programming language construct that guarantees 

mutual exclusion

 Will not trust processes accessing the critical region

◼ We can build it on the top of semaphores 



Monitors



Monitors

◼ A programming language construct introduced by Hoare 

(1974) & Brinch-Hansen (1975)

◼ Finally implemented in Java 

 without named conditions

◼ A monitor is a package encapsulating procedures, variables and 

data structures.



Monitors

◼ To access the monitor variables, processes must go through one 

of the monitor procedures.

◼ Monitor procedures are always executed one at a time

 Mutual exclusion is always guaranteed.



User view

Monitor procedures (always executed one by one)

Shared data

themselves



Monitors

◼ Monitor procedures can

 wait on a condition (cond.wait)

 until they get a signal (cond.signal) from another monitor 

procedure.

◼ Although conditions look like normal variables, they have

no value



Monitors

◼ If a monitor procedure signals a condition and no other procedure 

is waiting for it, the signal will be lost:

◼ It does not help to scream when nobody is listening!



Monitors

◼ If a monitor procedure waits for a condition that has already been 

signaled, it will remain blocked until the condition is signaled again

◼ It does not help either to wait for something that has already 

happened!



Not the same as semaphores

◼ If a process does a V( ) operation on a semaphore and no other 

process is doing a P( ) operation on the semaphore, the value of 

the semaphore will be changed

◼ This is not true for condition variables



The monitor body

◼ The monitor body is executed when monitor is started

 Its major purpose is to initialize the monitor variables and data 

structures.



First example (I)

◼ Implementing semaphores on top of monitors

 Class semaphore with methods P( ) and V( )

◼ No practical application

 Monitors are implemented on top of semaphores and not the 

other way around!

◼ Shows that monitors are

as powerful as semaphores



First example (II)

Class semaphore {

//  private declarations
private condition notZero;
private int value; // semaphore's value



First example (III)

// must be public and syn’d

public void synchronized sem_P(){
// check  before waiting
if (value == 0)

notZero.wait();
value--; // decrement

} // P



First example (IV)

// must be public and syn’d
public void synchronized sem_V(){

value++;
notZero.signal();

} // V

Note that the V() method always signals

the notZero condition even when it was

already true



First example (V)

// constructor
semaphore(int initial_val){

value = initial_val;
} //constructor

}// Class semaphore



Second example (I)

◼ The bounded buffer

 Class Bounded_Buffer with methods put( ) and get( )



Second example (II)

Class Bounder_Buffer {

// private declarations
private condition notFull;
private condition notEmpty;
private int bufferSize;
private int nFullSlots;



Second example (III)

// monitor procedures
// must be public and sync’d
public void synchronized put(){ 

// MUST CHECK FIRST
if (nFullSlots == bufferSize)

notFull.wait();
. . .
nFullSlots++;
notEmpty.signal();

} // put



Second example (III)

// monitor procedures (cont’d)

// must be public and sync’d
public void synchronized get(){

//  MUST CHECK FIRST
if (nFullslots == 0)

notEmpty.wait();
. . .
nFullSlots--;
notFull.signal;

} // get



Second example (IV)

// monitor procedures (cont’d)

// must be public and sync’d
public void synchronized get(){

//  MUST CHECK FIRST
if (nFullslots == 0)

notEmpty.wait();
. . .
nFullslots--;
notFull.signal;

} // get



Second example (V)

// constructor is monitor body

Bounded_Buffer(int size) {
nFullSlots = 0;
bufferSize= size;

} //constructor



Semantics of signal (I)

◼ Gives immediate control of the monitor to the procedure that 

was waiting for the signal

 The procedure that issued the signal is then put temporarily 

on hold

◼ Has no effect if there is no procedure waiting for the signal



Semantics of signal (II)

◼ Causes two types of problems

 Too many context switches

 Prevents programmers from putting signal calls inside their 

critical sections

◼ Sole truly safe place to put them is at the end of procedure 

◼ Not an ideal solution as the programmer can forget to put 

them there



The notify primitive (I)

◼ Introduced by Lampson and Redell in Mesa

 Adopted by Gosling  for Java 

◼ When a monitor procedure issues a condition.notify( ), the  

procedure that was waiting for the notify does not regain control of 

the monitor until the procedure that issued the signal

 Terminates

 Waits on a condition 



The notify primitive (II)

◼ Advantages:

 Fewer context switches 

 Programmers can put notify() calls anywhere



The notify primitive (III)

◼ Very minor disadvantage:

 Condition might not be true anymore

 Should replace if in

if(condition_is_false)
condition.wait()

 By a while

while(condition_is_false)
condition.wait()



Java implementation

◼ The Java equivalent of a monitor is a Java class whose access 

methods have been declared synchronized

 Java does not support named conditions: 

◼ When a synchronized method does a wait(), it cannot 

specify the condition it wants to wait on

 Java has notify( ) and notifyAll( )



Advanced pthread 

synchronization



The big idea

◼ Monitors are safer and easier to use than semaphores

 But they are a language-based construct

◼ Want to provide the same ease of use through pthread functions

◼ Introduce condition variables



Back to the bounded buffer problem

◼ producer() { consumer() {
struct x item; struct x item;
for (;;) { for (;;) {

produce(&item); sem_P(&notEmpty);
sem_P(&notFull); sem_P(&mutex);
sem_P(&mutex); take(item);
put(item); sem_V(&mutex);
sem_V(&mutex); sem_V(&notFull);
sem_V(&notEmpty); consume(item);

} // for } // for

} // producer } // consumer



Condition variables

◼ Pthread feature

◼ Always used in conjunction with pthread mutexes

◼ Let threads to synchronize based upon the actual values of data

 Buffer full/not full 



The new approach

producer() {
struct x item;
for(;;) {
produce(&item)
mutex_lock(&bLock); NEW

while (nFull == bsize)
wait(&notFul, &bLock);

put(item);
nFull++;
pthread_cond_signal(&notEmpty);
mutex_unlock(&bLock); NEW

} // for
} // producer

consumer() {
struct x item;
for(;;) {
mutex_lock(&bLock); NEW

while (nFull == 0)
wait(&notEmpty, &bLock); 

take(item);
nFull--;
pthread_cond_signal(&notFull);
mutex_unlock(&bLock); NEW

consume(&item);      
} // for

} // consumer



Creating conditional variables

◼ Must  be declared  pthread_cond_t

◼ Static method:

pthread_cond_t mycv = PTHREAD_COND_INITIALIZER;

◼ Dynamic method:

pthread_cond_t mycv;
…
int pthread_cond_init(&mycv, NULL);



Comments

◼ Using pthread_cond_init( ) lets the programmer set the  

optional  process-shared attribute:

 Allows the condition variable to be seen by threads in other 

processes.

 Use NULL to specify the default

◼ We will not discuss

 pthread_condattr_init (attr)

 pthread_condattr_destroy (attr)



Deleting condition variables

◼ int pthread_cond_destroy(&cv);

 As with pthread_cond_init(),

pthread_cond_destroy() will return zero if successful and 

an error code otherwise.



Operations on condition variables

◼ Three operations:

 pthread_cond_wait(&cv, &amutex)

 pthread_cond_signal(&cv)

 pthread_cond_broadcast(&cv)



pthread_cond_wait ( )

◼ pthread_cond_wait(&cv, &aMutex)

 Waits until condition variable cv is signaled

 Mutex aMutex must by locked and owned by calling thread

 While waiting for the signal, calling thread releases aMutex

 Upon successful return, aMutex will be locked and  owned by 

the calling thread



Usage

◼ pthread_mutex_lock(&bLock);
while (nFull == 0)

pthread_cond_wait(&notEmpty, &bLock);
. . .
pthread_mutex_unlock(&bLock);

Could use an if but using a while is safer



Signaling a condition

◼ pthread_cond_signal(&cv)

 Unblocks at least one thread currently blocked on the condition 

variable cv

◼ pthread_cond_broadcast(&cv)

 Unblocks all threads currently blocked on the condition variable 
cv



Warning

◼ The thread calling  pthread_cond_broadcast()

or pthread_cond_signal()

must own the mutex that the threads calling

pthread_cond_wait() have associated with the condition 

variable during their waits

◼ Otherwise expect unpredictable behavior



Usage

◼ pthread_mutex_lock(&bLock);
while (nFull == 0)

pthread_cond_wait(&notEmpty, &bLock);
…

pthread_cond_signal(&notFull);       
pthread_mutex_unlock(&bLock);



What it means

pthread_mutex_lock(&bLock);
…

while (nFull == 0)
pthread_cond_wait(&notEmpty, &bLock);
… 

pthread_mutex_unlock(&bLock); pthread_mutex_lock(&bLock);
… 

pthread_cond_signal(&notEmpty);       
pthread_mutex_unlock(&bLock);

The signal waking up a waiting thread must own the lock that the 

signal had released (and will regain)



Notes 

◼ There is also a pthread_cond_timedwait(…)

 Not covered

◼ For  more details on pthreads, refer to the LLNL tutorial:

 POSIX Threads Programming

https://computing.llnl.gov/tutorials/pthreads/

https://computing.llnl.gov/tutorials/pthreads/

