
Chapter V

INTER-PROCESS

SYNCHRONIZATION

Jehan-François Pâris

jfparis@uh.edu

Chapter overview

◼ The critical section problem

◼ Purely software solutions

◼ Spin locks

 Intel realization

◼ Semaphores

◼ Classical synchronization problems

◼ Monitors

◼ Advanced pthread synchronization

Shared Memory

◼ Name says it

 Two or more processes share a part of their address space

Process P

Process Q

same

Shared files

◼ Two processes access the same file at the same time

Process P

Process Q

File f

The outcome

◼ We can expect incorrect results whenever two processes (or two

threads of a process) modify the same data at the same time

First example (I)

◼ Bank Account Management

 Each account has a balance

 One process tries to credit an account

 Another process tries to debit the same account

The credit function

do_credit(int account, float amount) {

float balance;

fp = fopen(...); // open file

fseek(fp, ...); // locate account

fscanf(fp,"%f", &balance); // read balance

balance += amount; // update balance

fseek(fp, ...); // go back to account

fprintf(fp,"%f", balance); // save result

} // do_credit

A

B

The debit function

do_debit(int account, float amount) {

float balance;

fp = fopen(...); // open file

fseek(fp, ...); // locate account

fscanf(fp,"%f", &balance); // read balance

balance -= amount; // update balance

fseek(fp, ...); // go back to account

fprintf(fp,"%f", balance); // save result

} // do_debit

C

D

First example (II)

◼ Assuming

 Balance is $500

 Amount to be credited is $3000

 Amount to be debited is $100

◼ Sole correct value for final balance is $3400

◼ We can also get $3500 and $400!

 Everything depends on ordering of reads and writes

Explanation (I)

◼ Correct result is guaranteed if the two processes access the data

one after the other

 I/Os are done in the order

◼ A, B then C, D

◼ C, D then A, B

 Final balance will be $3400

Explanation (II)

◼ Account will not be credited if both functions read the old value of

the balance and the debit function updates the file last

 Disk accesses are done in the order

◼ A, C then B, D

◼ C, A then B, D

 Final balance will be $400

Explanation (III)

◼ Account will not be debited if both functions read the old value of

the balance and the credit function updates the file last

 Disk accesses are done in the order

◼ A, C then D, B

◼ C, A then D, B

 Final balance will be $3500

The problem

◼ We have a race condition

 Outcome of concurrent execution of the processes will depend

on process speeds

◼ We will observe irreproducible errors

 Hard to detect and debug

The solution

◼ Define critical sections in the two functions

◼ Control access to critical sections

The credit function

do_credit(int account, float amount) {

float balance;

fp = fopen(...); // open file

fseek(fp,...); // locate account

fscanf(fp,"%f", &balance); // read balance

balance += amount; // update balance

fseek(fp,...); // go back to account

fprintf(fp,"%f", balance); // save result

} // do_credit

The debit function

do_debit(int account, float amount) {

float balance;

fp = fopen(...); // open file

fseek(fp,...); // locate account

fscanf(fp, %f", &balance); // read balance

balance -= amount; // update balance

fseek(fp,...); // go back to account

fprintf(fp,"%f", balance); // save result

} // do_debit

Second example (I)

◼ Most text editors and word processors do not update directly the

files on which they operate

 Create a temporary tempFile

 Modify the original file when the user issues a save command

◼ What will happen if two users edit the same file at the same

time?

Second example (II)

Time

F'

Alice saves first

Bob saves last:

Alice’s work is lost!

F F'

F''

F''

The problem

◼ Another race condition

 Should never have two users/processes updating the same file

at the same time

◼ Don’t let other people edit our files

 Send them a copy!

A real race condition

◼ Pthread program creating a child thread

◼ Set a global counter to 0

◼ Both parent and child add one to counter 100,000 times

◼ When both are done, final counter value is 200,000

 Right?

Realrace.cpp (I)

◼ #include <iostream>
#include <pthread.h>
using namespace std;

◼ //Shared counter
static int counter = 0;

Realrace.cpp (II)

◼ // The thread function
void *child_fn(void *arg) {

int i, ntimes;
ntimes = (int) arg;
for (i = 0; i < ntimes ; i++) {

counter++;
} // for

} // child_thread

Realrace.cpp (III)

◼ void main() {
pthread_t tid;
int ntimes =100000;
int i = 0;

pthread_create(&tid, NULL, child_fn,
(void *) ntimes);

Realrace.cpp (IV)

◼ for (i = 0; i < ntimes ; i++) {
counter++;

} // for
pthread_join(tid, NULL);
cout << "Final value of counter: " << counter

<< endl ;
} // main

The outcome

◼ Final value of counter is smaller than 200,000

◼ Frequent race conditions result in conflicting increments

 Both parent and child access the same counter

 Increment it twice

Searching for a solution

◼ Three approaches

 Disabling interrupts

 Enforcing mutual exclusion

 Using an atomic transaction mechanism

Disabling interrupts

◼ Very dangerous solution for user programs

◼ Was sometimes used for very short critical sections in the kernel

◼ Does not work for multithreaded kernels running on

multiprocessor architectures.

Enforcing mutual exclusion

◼ Portions of code where the shared data are read and modified are

defined as critical sections

◼ Must guarantee that we will never have more than only one

process in a critical section for the same shared data

◼ Works best with short critical regions

◼ Preferred solution

Norace.cpp (I)

◼ #include <iostream>
#include <pthread.h>
using namespace std;

◼ //Shared counter and shared lock
static int counter = 0;
static pthread_mutex_t lock;

Norace.cpp (II)

◼ // The thread function
void *child_fn(void *arg) {

int i, ntimes;
ntimes = (int) arg;
for (i = 0; i < ntimes ; i++) {

pthread_mutex_lock(&lock);
counter++;

pthread_mutex_unlock(&lock);
} // for

} // child_thread

Norace.cpp (III)

◼ void main() {
pthread_t tid;
int ntimes =100000;
int i = 0;
// Create the lock
pthread_mutex_init(&lock, NULL);
// Create the thread
pthread_create(&tid, NULL, child_fn,

(void *) ntimes);

Norace.cpp (IV)

◼ for (i = 0; i < ntimes ; i++) {
pthread_mutex_lock(&lock);

counter++;
pthread_mutex_unlock(&lock);

} // for

pthread_join(tid, NULL);
cout << "Final value of counter: " << counter

<< endl;
} // main

The outcome

◼ Program is much slower

◼ Gets the expected result

Using atomic transactions

◼ Will allow several processes to access the same shared data

without interfering with each other

◼ Preferred solution for database access since

 Most databases are shared

 Their critical sections can be very long as they often involve a

large number of disk accesses

Criteria to satisfy (I)

◼ Any solution to the critical section problem should satisfy the

four following criteria

1. No two processes may be simultaneously into their critical

sections for the same shared data

We want to enforce mutual exclusion

Criteria to satisfy (II)

2. No assumptions should be made about the speeds at which

the processes will execute.

The solution should be general:

the actual speeds at which processes complete are often

impossible to predict because running processes can be

interrupted at any time!

Criteria to satisfy (III)

3. No process should be prevented to enter its critical section

when no other process is inside its own critical section for the

same shared data

Should not prevent access to the shared data when it is not

necessary.

Criteria to satisfy (IV)

4. No process should have to wait forever to enter a critical

section

Solution should not cause starvation

My mnemonics

◼ Solution should provide

1. Mutual exclusion

2. All the mutual exclusion

3. Nothing but mutual exclusion

4. No starvation

Solutions

◼ Five approaches

 Pure software

◼ Peterson’s Algorithm

 Spin locks

◼ Use xchg instruction

 Semaphores

 Monitors

 Locks and condition variables

Pure software solutions

Pure Software Solutions

◼ Make no assumption about the hardware

 Peterson’s Algorithm

 Easier to understand than Dekker’s algorithm

◼ Original solution

A bad solution (I)

#define LOCKED 1
#define UNLOCKED 0
int lock = UNLOCKED; // shared
// Start busy wait
while (lock == LOCKED);
lock = LOCKED;

Critical_Section(…);
// Leave critical section
lock = UNLOCKED;

A bad solution (II)

◼ Solution fails if two or more processes reach the critical section in

lockstep when the critical section is UNLOCKED

 Will both exit the busy wait

 Will both set Lock variable to LOCKED

 Will both enter the critical section at the same time

◼ Which condition does this solution violate?

Examples (I)

◼ You live in a dorm

 Go to the showers

 Find a free stall

 Return to your room to bring your shampoo

 Get into the free stall and find it occupied!

Examples (II)

◼ You see a free parking spot

◼ Move towards it

◼ Do not see another car whose driver did not see you

A bad solution (III)

◼ Solution violates second condition

 Does not always guarantee mutual exclusion

Other bad solutions

◼ People have tried plenty of bad solutions

Peterson Algorithm (I)

◼ Simplest case

 Two processes

 Process IDs are 0 and 1

◼ Philosophy is

 Grab a lock for CS before checking that CS is free

 Use a tie-breaker to handle conflicts

Peterson Algorithm (II)

#define F 0
#define T 1
// shared variables
int reserved[2] = {F, F};
int mustWait; // tiebreaker

Peterson Algorithm (III)

void enter_region(int pid) {
int other; //other process
other = 1 - pid;
reserved[pid] = T;
// set tiebraker
mustWait = pid;
while (reserved[other]&&
mustWait==pid);

} // enter_region

Peterson Algorithm (IV)

void leave_region(int pid) {
reserved[pid] = F;

} // leave_region

Peterson Algorithm (V)

◼ Essential part of algorithm is

reserved[pid] = T;
mustWait = pid;
while reserved[other]&&
mustWait==pid);

◼ When two processes arrive in lockstep,

last one will wait

Spin locks

Spin locks

◼ These solutions use special instructions to achieve an atomic

test and set:

 Putting the lock testing and the lock setting functions into a

single instruction makes the two steps atomic

◼ Cannot be separated by an interrupt

The exchange instruction (I)

◼ We assume the existence of a shared lock variable

int lockvar = 0; // shared

◼ Will only have two possible values

 0 meaning nobody is inside the critical section

 1 meaning somebody has entered the critical section

The exchange instruction (II)

◼ We introduce an atomic instruction

exch register, lockvar

 swaps contents of register and lockvar

How we use it

◼ We set register to one before doing

exch register, lockvar

◼ What will be the outcome?

?

register

1

lockvar

The two possible outcomes (I)

◼ If register == 1
 lockvar was already set to 1

 We cannot enter the critical section

 We must retry

◼ If register == 0
 lockvar was equal to 0

 We have successfully set it to 1

 We have entered the critical section

Before the exchange

◼ We do not know the state of lockvar

◼ Could be

 Unlocked and free to grab?

 Locked and in use by another process?

Register

?

Lockvar

After the exchange (I)

◼ The lock was already locked

◼ Attempt failed

◼ Must retry

Register Lockvar

After the exchange (II)

◼ Lockvar was unlocked

◼ It is now locked

 We succeeded!

◼ Can enter the critical region

Register Lockvar

Entering a critical region

◼ To enter a critical region, repeat exchange until it succeeds

do {
exchange(int *pregister,int &plockvar)
// pregister points to register
// plockvar points to lock var

} while (*pregister == 1);

Leaving a critical section

◼ To leave a critical region, do

*plockvar = 0;

The x86 xchg instruction

◼ xchg op1, op2

 Exchanges values of two operands

 Always atomic (implicit lock prefix) if one of the operands is a

memory address

◼ xchg %eax, lockvar

How to use it

◼ enter_region:
movl 1, %eax # set to one
xchg %eax, lockvar
test %eax, %eax
jnz enter_region # try again

◼ leave_region:
movl 0, %eax # reset to zero
xchg %eax, lockvar

Same code in MASM

◼ enter_region:
movl eax, 1 ; set to one
xchg eax, [lockvar]
test eax, eax
jnz enter_region ; try again

◼ leave_region:
movl eax, 0 ; reset to zero
xchg eax, [lockvar]

Underlying assumptions

◼ Peterson's algorithm and spinlocks assume that

 Instructions execute in sequence

 Instructions execute in an atomic fashion

◼ Less and less true in modern CPU architectures

 Intel x86 architecture has an instruction prefix lock making any
instruction writing into memory atomic

◼ lock movl 1, lockvar

The bad news

◼ Peterson's algorithm and spinlocks rely on busy waits.

◼ Busy waits waste CPU cycles:

 Generate unnecessary context switches on single processor

architectures

 Slow down the progress of other processes

Priority inversion

◼ A high priority process doing a busy wait may prevent a lower

priority process to do its work and leave its critical region.

 Think about a difficult boss calling you every two or three

minutes to ask you about the status of the report you are

working on

In conclusion (I)

◼ We had to avoid busy waits on single-core architectures

◼ We can use them only for short waits on multicore

architectures

In conclusion (II)

◼ Several operating systems for multiprocessor architectures offer

two different mutual exclusion mechanisms:

 Busy waits for very short waits

◼ Spinlocks

 Putting the waiting process in the blocked state until the

resource becomes free for longer waits

In conclusion (III)

◼ Like waiting for a table in a restaurant:

 If we are promised a very short wait, we will wait there

 Otherwise, we might prefer to go for a walk (especially if it is a

beach restaurant) or have a drink at the bar

Semaphores

Semaphores

◼ Introduced in 1965 by E. Dijkstra

◼ Semaphores are special integer variables that can be initialized to

any value 0 and can only be manipulated through two atomic

operations: P() and V()

◼ Also called wait() and signal()

 Best to reserve these two names for operations on conditions

in monitors.

The P() operation

◼ If semaphore value is zero,

 Wait until value become positive

◼ Once value of semaphore is greater than zero,

 Decrement it

The V() operation

◼ Increment the value of the semaphore

How they work

◼ The normal implementation of semaphores is through system

calls:

 Busy waits are eliminated

 Processes waiting for a semaphore whose value is zero are

put in the blocked state

An analogy

◼ Paula and Victor work in a restaurant:

◼ Paula handles customer arrivals:

 Prevents people from entering the restaurant when all tables

are busy.

◼ Victor handles departures

 Notifies people waiting for a table when one becomes available

An analogy (II)

◼ The semaphore represents the number of available tables

 Initialized with the total number of tables in restaurant

An analogy (III)

Paula

Victor

Bar

An analogy (IV)

◼ When people come to the restaurant, they wait for Paula to direct

them:

 If a table is available, she let them in and decrements the table

count

 Otherwise, she directs them to the bar

An analogy (V)

X

X

X

X

Paula

Victor

Bar

An analogy (VI)

◼ When people leave, they tell Victor:

 Victor increments the semaphore and checks the waiting area:

 If there is anyone in there, he lets one group in and

decrements the semaphore

◼ Paula and Victor have worked long enough together and don't

interfere with each other

Two problems

◼ What if somebody sneaks in the restaurant and bypasses

Paula?

 Paula will let a group of people in when all tables are busy.

◼ What if people forget to tell Victor they are leaving?

 Their table will never be reassigned.

Implementation (I)

◼ To avoid busy waits, we will implement semaphores as kernel

objects

◼ Each semaphore will have a value and an associated queue.

◼ New system calls:
 sem_create()
 sem_P():
 sem_V()
 sem_destroy()

Implementation (II)

◼ sem_create():

 Creates a semaphore and initializes it

◼ sem_destroy():

 Destroys a semaphore

Implementation (III)

◼ sem_P():

 If the semaphore value is greater than zero, the kernel

decrements it by one and lets the calling process continue.

 Otherwise the kernel puts the calling process in the waiting

state and stores its process-id in the semaphore queue.

Implementation (IV)

◼ sem_V():

 If the semaphore queue is not empty, the kernel selects one

process from the queue and puts it in the ready queue

 Otherwise, the kernel increments by one the semaphore

value

Binary semaphores

◼ Their value can only be zero or one

◼ Mostly used to provide mutual exclusion

◼ Semantics of P() operations not affected

◼ V() now sets semaphore value to one

Mutual Exclusion (I)

◼ Assign one semaphore to each group of data that constitutes a

critical section

◼ Initial value of semaphore must be one:

semaphore mutex = 1;

Mutual exclusion (II)

◼ Before entering a critical region, processes must do:

 P(&mutex);

 Wait until critical region becomes free

◼ Processes leaving a critical region must do

 V(&mutex);

 Signal the process is leaving the critical section

Making a process wait

◼ The initial value of semaphore must be zero.

semaphore waitforme = 0;

◼ Process that needs to wait for another process does:

sem_P(&waitforme);

◼ When the other process is ready, it will do:

sem_V(&waitforme);

Example (I)

◼ Alice has promised to take her friends to the beach in her new car

◼ Everybody will meet on campus in front of the University Center

◼ Her three friends are Beth, Carol and Donna

Example (II)

◼ We will have three semaphores

semaphore beth_is_there = 0;
semaphore carol_is_there = 0;
semaphore donna_is_there = 0;

◼ There are all initialized to zero

Example (III)

◼ Alice will do

sem_P(&Beth_is_there);

sem_P(&Carol_is_there);

sem_P(&Donna_is_there);

Example (IV)

◼ When her friends arrive, they will do

sem_V(&Beth_is_there);

sem_V(&Carol_is_there);

sem_V(&Donna_is_there);

Example (V)

◼ Our solution assumes that Alice will definitively be the first to

arrive

 Her friends will never have to wait for her

◼ If this is not the case, we need to force everyone to wait for

everyone

Setting up a rendezvous (I)

◼ To force two processes to wait for each other, we need two

semaphores both initialized at zero

semaphore waitforfirst = 0;
semaphore waitforsecond = 0;

Setting up a rendezvous (II)

◼ When the first process is ready, it will do

sem_V(&waitforfirst);
sem_P(&waitforsecond);

◼ When the second process is ready, it will do

sem_V(&waitforsecond);
sem_P(&waitforfirst);

Setting up a rendezvous (III)

◼ What will happen if the first process does

sem_P(&waitforsecond);
sem_V(&waitforfirst);

and the second process does

sem_P(&waitforfirst);
sem_V(&waitforsecond);

Setting up a rendezvous (IV)

◼ We will have a deadlock

Advantages of semaphores (I)

◼ Semaphores are machine-independent

◼ They are simple but very general

◼ They work with any number of processes

◼ We can have as many critical regions as we want by assigning a

different semaphore to each critical region

Advantages of semaphores (II)

◼ We can use semaphores for synchronizing processes in an

arbitrary fashion

◼ The key idea is layering:

 Pick a powerful and flexible mechanism that apply to many

problems

 Build later better user interfaces

Implementations

Implementations

◼ UNIX has three noteworthy implementations of semaphores:

 The old System V semaphores

◼ Now obsolete

 The newer POSIX semaphores

◼ For reference only

 The Pthread semaphores

◼ For reference only

Overview

◼ Six operations:

 sem_open()

 sem_wait()

 sem_post()

 sem_getvalue()

 sem_close()

 sem_unlink()

Will focus on named POSIX

semaphores

“named” means here having

a global system-wide name

Sem_open()

◼ Sole non-trivial call

 Works like open() with O_CREAT option

◼ Accesses the named semaphore

◼ Creates it if and only if it did not already exist

WARNING:

If you are debugging a program

that has crashed, sem_open will not reinitialize

any semaphore that has survived the crash

Sem_open syntax

◼ sem_t *mysem;
char name[] = "Sem Name";
unsigned int initial_value;
mysem = sem_open(name,

O_CREAT, 0600,
initial_value);

0600 prevents other users from

accessing the new semaphore

Semaphore names

◼ Semaphores appear in the file system in subdirectory of
/dev/shm

 Names prefixed with "sem."

◼ Can be removed just like regular files using "rm"

◼ The names of the semaphores you are using must be unique

 All stored in a system wide directory

A source of troubles

◼ sem_open(…) does not change the value of an existing

semaphore

 initial_value is only used if the semaphore did not already

exist

◼ Must be sure that all your semaphores have been deleted before

restarting your program

 ls /dev/shm/sem.*

Sem_wait() and sem_post()

◼ sem_t *mysem;
sem_wait(mysem);

 Implements the sem_P() operation

◼ sem_t *mysem;
sem_post(mysem);

 Implements the sem_V() operation

Sem_getvalue()

◼ Can test at any time the value of any opened semaphore:

sem_t *mysem;

int value;
sem_getvalue(mysem,&value);

◼ Non-standard feature of POSIX semaphores

Sem_close()

◼ sem_t *mysem;
sem_close(mysem);

 Closes the semaphore

(without changing its value)

Sem_unlink()

◼ char name[];
sem_unlink(name);

 Removes the semaphore unless it is accessed by another

process

◼ That process will still be able to access the semaphore until

it closes it

Pthread synchronization

◼ Pthreads offer three synchronization primitives

 POSIX semaphores

◼ Can use private semaphores

 Unnamed

 Mutexes

 Condition variables

For reference only

Unnamed semaphores (I)

◼ Have no system-wide name in /dev/shm

◼ Work like regular POSIX semaphores but for creation and deletion

 sem_init() and sem_destroy()

◼ Given a regular variable name

◼ To remain visible to all users, variable must be declared

 Static if only shared by pthreads

 In a shared memory segment if shared by processes

Unnamed semaphores (II)

◼ Creating a semaphore

 static sem_t sem;
int sem_init(sem_t *sem, int pshared,

unsigned initial_value);

 If pshared is 0

◼ Semaphore is only shared by the threads within the
process

◼ Otherwise it can be shared with other processes

Mutexes

◼ Built-in mutexes

 static pthread_mutex_t name;

 pthread_mutex_init(&name, NULL);

 pthread_mutex_lock(&name);

 pthread_mutex_unlock(&name);

◼ Mutexes are always initialized to one

 As they should

Mutexes and binary semaphores

Binary semaphores

◼ Can only have

two values

◼ Any process can

lock or unlock a binary

semaphore

Great for rendez-vous

Mutexes

◼ Can only have

two values

◼ A mutex can only be

unlocked by the thread that

locked it

Less general

Classical synchronization

problems

What are they?

◼ Will cover three problems

 Bounded buffer

 Readers and writers

 Dining philosophers

◼ Will mention but not cover

 Sleeping barber

Bounded buffer (I)

◼ One or more producer processes put their output in a bounded

buffer

 Must wait when buffer is full

◼ One or more consumer processes take items from the buffer

 Must wait when buffer is empty

Bounded buffer (II)

Producer

Producer

Consumer

Consumer

Consumer

The three rules

◼ Producers cannot put items in the buffer when it is full

◼ Consumers cannot take items from the buffer when it is empty

◼ Producers and consumers must access the buffer one at a time

Two analogies

◼ The supermarket

 Supermarket is the buffer

 We are the consumers

 Suppliers are the producers

◼ Our garbage

 Our garbage can is the buffer

 We are the producers

 Garbage truck is the consumer

The solution

◼ Declarations

#define NSLOTS ... // size
semaphore mutex = 1;
semaphore notFull = NSLOTS;
semaphore notEmpty = 0;

The functions

◼ producer() { consumer() {
struct x item; struct x item;
for (;;) { for (;;) {

produce(&item); sem_P(¬Empty);
sem_P(¬Full); sem_P(&mutex);
sem_P(&mutex); take(item);
put(item); sem_V(&mutex);
sem_V(&mutex); sem_V(¬Full);
sem_V(¬Empty); consume(item);

} // for } // for

} // producer } // consumer

A bad solution

◼ producer() { consumer() {
struct x item; struct x item;
for (;;) { for (;;) {

produce(&item); sem_P(&mutex);
sem_P(¬Full); sem_P(¬Empty);
sem_P(&mutex); take(item);
put(item); sem_V(&mutex);
sem_V(&mutex); sem_V(¬Full);
sem_V(¬Empty); consume(item);

} // for } // for

} // producer } // consumer

Order matters

◼ The order of the two P() operations is very important

 Neither the producer or the consumer should request exclusive

access to the buffer before being sure they can perform the

operation they have to perform

◼ The order of the two V() operations does not matter

The readers-writers problem (I)

◼ We have a file (or a database) and two types of processes:

 Readers that need to access the file

 Writers that need to update it.

◼ A real problem

The readers-writers problem (II)

◼ Readers must be prevented from accessing the file while a writer

updates it.

◼ Writers must be prevented from accessing the file while any other

process accesses it

 They require mutual exclusion

An analogy

◼ Sharing a classroom between teachers and students

 Teachers use it to lecture

◼ They cannot share the room

 Students use it for quiet study

◼ They can share the room with other students

◼ Classroom is assumed to be in use if the light is turned on

Rules for teachers

◼ Do not enter a classroom if its light is turned on

◼ Otherwise

 Turn the light on when you come in

 Turn the light off when you leave

Rules for students

◼ If the light is on and you see students but no teacher

 Enter the room

◼ If the light is off, you are the first student to enter the room

 Turn the light on and enter the room

◼ If you are the last student to leave the room

 Turn the light off after leaving

The readers-writers problem (III)

◼ Shared variables and semaphores

int readersCount = 0;
semaphore mutex = 1;
semaphore access = 1;

The readers-writers problem (IV)

write_to_file() {
P(&access);

. . .
V(&access);

} // write_to_file

The readers-writers problem (V)

read_the_file(){
readersCount++;
if(readersCount == 1)

sem_P(&access);
. . .

readersCount--;
if(readersCount == 0)

sem_V(&access);
} // read_the_file

TENTATIVE

SOLUTION

Classrooms with two doors

◼ What if two students enter in lockstep using different doors?

 Second will think he is the first to enter the room

 Will see the light on and not enter

◼ What if two students leave in lockstep using different doors?

 Neither of them will notice they are the last ones to leave

 Neither will turn the light off

The readers-writers problem (VI)

read_the_file(){
sem_P(&mutex);
readersCount++;
if(readersCount == 1)

sem_P(&access);
sem_V(&mutex);
. . .

The readers-writers problem (VII)

sem_P(&mutex);
readersCount--;
if(readersCount == 0)

sem_V(&access);
sem_V(&mutex);

} // read_the_file

Starvation

◼ Solution favors the readers over the writers

 A continuous stream of incoming readers could block writers

forever

◼ Result would be writers' starvation.

The dining philosophers (I)

◼ Five philosophers sit at a table. They spend their time thinking

about the world and eating spaghetti

 The problem is that there are only five forks.

 If all five philosophers pick their left forks at the same time, a

deadlock will occur

Food

The table layout

The dining philosophers (II)

#define N 5

semaphore mutex = 1;

The dining philosophers (III)

philosopher(int i) {
for (;;) {

think();
take_fork(i); // left before
take_fork((i+1)%N); // right
eat();
put_fork(i);
put_fork((i+1)%N);

} // for loop
} // philosopher

Avoiding the deadlock

philosopher(int i) {
for (;;) {

think();
if (i == 0) {

take_fork((i+1)%N); // right
take_fork(i); // before left

} else {
take_fork(i); // left before
take_fork((i+1)%N); // right

} // if-else
…

} // for loop
} // philosopher

The dining philosophers (IV)

◼ To break the deadlock, we force one of the philosophers to grab

their right fork before their left fork

◼ The main interest of this problem is that it belongs to the

operating system folklore

The dining philosophers (V)

The sleeping barber (I)

◼ Proposed by Andrew Tanenbaum in his textbook Modern

Operating Systems.

 Not covered it in class.

 Shows how to track the value of a semaphore using a global

variable.

The sleeping barber (II)

◼ A barber shop has several chairs for waiting customers and one

barber who sleeps when there are no customers.

◼ Customers don't wait if the shop is full and there are no free chairs

to sit upon.

 Must keep track of the number of customers in the shop

Global declarations

◼ #define NCHAIRS 4
// number of chairs
semaphore mutex = 1; semaphore ready_barber = 0;
semaphore waiting_customers = 0;
int nwaiting = 0;
// tracks value of waiting_customers

The barber function

◼ barber() {
for(;;) {

sem_P(&waiting_customers);
sem_P(&mutex);
nwaiting--;
sem_V(&ready_barber);
sem_V(&mutex);
cut_hair();

} // for
} // barber

The customer function

◼ customer() {
P(&mutex);
if (nwaiting < NCHAIRS) {

nwaiting++;
sem_V(&waiting_customers);
V(&mutex);
sem_P(&ready_barber);
get_haircut();

} // if
sem_V(&mutex);

} // customer

Limitation of semaphores

◼ Semaphore are a low level construct:

Deadlocks will occur if V() calls are forgotten

Mutual exclusion is not guaranteed if P() calls are forgotten

◼ Same situation as FORTRAN if and goto compared to more

structured constructs

A better solution

◼ We need a programming language construct that guarantees

mutual exclusion

 Will not trust processes accessing the critical region

◼ We can build it on the top of semaphores

Monitors

Monitors

◼ A programming language construct introduced by Hoare

(1974) & Brinch-Hansen (1975)

◼ Finally implemented in Java

 without named conditions

◼ A monitor is a package encapsulating procedures, variables and

data structures.

Monitors

◼ To access the monitor variables, processes must go through one

of the monitor procedures.

◼ Monitor procedures are always executed one at a time

 Mutual exclusion is always guaranteed.

User view

Monitor procedures (always executed one by one)

Shared data

themselves

Monitors

◼ Monitor procedures can

 wait on a condition (cond.wait)

 until they get a signal (cond.signal) from another monitor

procedure.

◼ Although conditions look like normal variables, they have

no value

Monitors

◼ If a monitor procedure signals a condition and no other procedure

is waiting for it, the signal will be lost:

◼ It does not help to scream when nobody is listening!

Monitors

◼ If a monitor procedure waits for a condition that has already been

signaled, it will remain blocked until the condition is signaled again

◼ It does not help either to wait for something that has already

happened!

Not the same as semaphores

◼ If a process does a V() operation on a semaphore and no other

process is doing a P() operation on the semaphore, the value of

the semaphore will be changed

◼ This is not true for condition variables

The monitor body

◼ The monitor body is executed when monitor is started

 Its major purpose is to initialize the monitor variables and data

structures.

First example (I)

◼ Implementing semaphores on top of monitors

 Class semaphore with methods P() and V()

◼ No practical application

 Monitors are implemented on top of semaphores and not the

other way around!

◼ Shows that monitors are

as powerful as semaphores

First example (II)

Class semaphore {

// private declarations
private condition notZero;
private int value; // semaphore's value

First example (III)

// must be public and syn’d

public void synchronized sem_P(){
// check before waiting
if (value == 0)

notZero.wait();
value--; // decrement

} // P

First example (IV)

// must be public and syn’d
public void synchronized sem_V(){

value++;
notZero.signal();

} // V

Note that the V() method always signals

the notZero condition even when it was

already true

First example (V)

// constructor
semaphore(int initial_val){

value = initial_val;
} //constructor

}// Class semaphore

Second example (I)

◼ The bounded buffer

 Class Bounded_Buffer with methods put() and get()

Second example (II)

Class Bounder_Buffer {

// private declarations
private condition notFull;
private condition notEmpty;
private int bufferSize;
private int nFullSlots;

Second example (III)

// monitor procedures
// must be public and sync’d
public void synchronized put(){

// MUST CHECK FIRST
if (nFullSlots == bufferSize)

notFull.wait();
. . .
nFullSlots++;
notEmpty.signal();

} // put

Second example (III)

// monitor procedures (cont’d)

// must be public and sync’d
public void synchronized get(){

// MUST CHECK FIRST
if (nFullslots == 0)

notEmpty.wait();
. . .
nFullSlots--;
notFull.signal;

} // get

Second example (IV)

// monitor procedures (cont’d)

// must be public and sync’d
public void synchronized get(){

// MUST CHECK FIRST
if (nFullslots == 0)

notEmpty.wait();
. . .
nFullslots--;
notFull.signal;

} // get

Second example (V)

// constructor is monitor body

Bounded_Buffer(int size) {
nFullSlots = 0;
bufferSize= size;

} //constructor

Semantics of signal (I)

◼ Gives immediate control of the monitor to the procedure that

was waiting for the signal

 The procedure that issued the signal is then put temporarily

on hold

◼ Has no effect if there is no procedure waiting for the signal

Semantics of signal (II)

◼ Causes two types of problems

 Too many context switches

 Prevents programmers from putting signal calls inside their

critical sections

◼ Sole truly safe place to put them is at the end of procedure

◼ Not an ideal solution as the programmer can forget to put

them there

The notify primitive (I)

◼ Introduced by Lampson and Redell in Mesa

 Adopted by Gosling for Java

◼ When a monitor procedure issues a condition.notify(), the

procedure that was waiting for the notify does not regain control of

the monitor until the procedure that issued the signal

 Terminates

 Waits on a condition

The notify primitive (II)

◼ Advantages:

 Fewer context switches

 Programmers can put notify() calls anywhere

The notify primitive (III)

◼ Very minor disadvantage:

 Condition might not be true anymore

 Should replace if in

if(condition_is_false)
condition.wait()

 By a while

while(condition_is_false)
condition.wait()

Java implementation

◼ The Java equivalent of a monitor is a Java class whose access

methods have been declared synchronized

 Java does not support named conditions:

◼ When a synchronized method does a wait(), it cannot

specify the condition it wants to wait on

 Java has notify() and notifyAll()

Advanced pthread

synchronization

The big idea

◼ Monitors are safer and easier to use than semaphores

 But they are a language-based construct

◼ Want to provide the same ease of use through pthread functions

◼ Introduce condition variables

Back to the bounded buffer problem

◼ producer() { consumer() {
struct x item; struct x item;
for (;;) { for (;;) {

produce(&item); sem_P(¬Empty);
sem_P(¬Full); sem_P(&mutex);
sem_P(&mutex); take(item);
put(item); sem_V(&mutex);
sem_V(&mutex); sem_V(¬Full);
sem_V(¬Empty); consume(item);

} // for } // for

} // producer } // consumer

Condition variables

◼ Pthread feature

◼ Always used in conjunction with pthread mutexes

◼ Let threads to synchronize based upon the actual values of data

 Buffer full/not full

The new approach

producer() {
struct x item;
for(;;) {
produce(&item)
mutex_lock(&bLock); NEW

while (nFull == bsize)
wait(¬Ful, &bLock);

put(item);
nFull++;
pthread_cond_signal(¬Empty);
mutex_unlock(&bLock); NEW

} // for
} // producer

consumer() {
struct x item;
for(;;) {
mutex_lock(&bLock); NEW

while (nFull == 0)
wait(¬Empty, &bLock);

take(item);
nFull--;
pthread_cond_signal(¬Full);
mutex_unlock(&bLock); NEW

consume(&item);
} // for

} // consumer

Creating conditional variables

◼ Must be declared pthread_cond_t

◼ Static method:

pthread_cond_t mycv = PTHREAD_COND_INITIALIZER;

◼ Dynamic method:

pthread_cond_t mycv;
…
int pthread_cond_init(&mycv, NULL);

Comments

◼ Using pthread_cond_init() lets the programmer set the

optional process-shared attribute:

 Allows the condition variable to be seen by threads in other

processes.

 Use NULL to specify the default

◼ We will not discuss

 pthread_condattr_init (attr)

 pthread_condattr_destroy (attr)

Deleting condition variables

◼ int pthread_cond_destroy(&cv);

 As with pthread_cond_init(),

pthread_cond_destroy() will return zero if successful and

an error code otherwise.

Operations on condition variables

◼ Three operations:

 pthread_cond_wait(&cv, &amutex)

 pthread_cond_signal(&cv)

 pthread_cond_broadcast(&cv)

pthread_cond_wait ()

◼ pthread_cond_wait(&cv, &aMutex)

 Waits until condition variable cv is signaled

 Mutex aMutex must by locked and owned by calling thread

 While waiting for the signal, calling thread releases aMutex

 Upon successful return, aMutex will be locked and owned by

the calling thread

Usage

◼ pthread_mutex_lock(&bLock);
while (nFull == 0)

pthread_cond_wait(¬Empty, &bLock);
. . .
pthread_mutex_unlock(&bLock);

Could use an if but using a while is safer

Signaling a condition

◼ pthread_cond_signal(&cv)

 Unblocks at least one thread currently blocked on the condition

variable cv

◼ pthread_cond_broadcast(&cv)

 Unblocks all threads currently blocked on the condition variable
cv

Warning

◼ The thread calling pthread_cond_broadcast()

or pthread_cond_signal()

must own the mutex that the threads calling

pthread_cond_wait() have associated with the condition

variable during their waits

◼ Otherwise expect unpredictable behavior

Usage

◼ pthread_mutex_lock(&bLock);
while (nFull == 0)

pthread_cond_wait(¬Empty, &bLock);
…

pthread_cond_signal(¬Full);
pthread_mutex_unlock(&bLock);

What it means

pthread_mutex_lock(&bLock);
…

while (nFull == 0)
pthread_cond_wait(¬Empty, &bLock);
…

pthread_mutex_unlock(&bLock); pthread_mutex_lock(&bLock);
…

pthread_cond_signal(¬Empty);
pthread_mutex_unlock(&bLock);

The signal waking up a waiting thread must own the lock that the

signal had released (and will regain)

Notes

◼ There is also a pthread_cond_timedwait(…)

 Not covered

◼ For more details on pthreads, refer to the LLNL tutorial:

 POSIX Threads Programming

https://computing.llnl.gov/tutorials/pthreads/

https://computing.llnl.gov/tutorials/pthreads/

