Chapter VI Deadlocks

Jehan-François Pâris jfparis@uh.edu

Chapter overview

- Deadlocks
- Necessary conditions for deadlocks
- Deadlock prevention

Deadlocks

- A deadlock is said to occur whenever
 - □ Two or more processes are blocked
 - Each of these processes is waiting for a resource that is held by another blocked process.

Examples

- Two friends have exchanged insults
 - □ Each is expecting the other to apologize first
- A rebel group does not want to cease the hostilities before being recognized by the government
 - The government is ready to negotiate but only after the hostilities have ceased

A graphic view

A graphic view

A graphic view

US and Free French in 1944

Elements

Processes
P
Resources
R

Relations

Process P holds on/owns resource R

Process P needs/wants resource R

Serially reusable resources

- Memory space, buffer space, disk space, USB slot to insert a flash drive
- Exist only in a *limited quantity*
- One process may have to *wait* for another process to *release* the resources it is currently holding.

Consumable resources

- Cannot be reused
- Messages are best example:
 - "Owned" by the process that creates them until it releases them
 - □ "Wanted" by the process that waits for them

Handling deadlocks

- Do nothing: Ignore the problem
- Deadlock prevention: Build deadlock-free systems
- Deadlock avoidance: Avoid system states that could lead to a deadlock
- Deadlock detection: Detect and break deadlocks

Handling deadlocks

- Do nothing: Ignore the problem
- Deadlock prevention: Build deadlock-free systems
- Deadlock avoidance: Avoid system states that could lead to a deadlock
- Deadlock detection: Detect and break deadlocks

Haberman's conditions

- Four necessary conditions must all be in effect for deadlocks to happen:
 - Mutual Exclusion
 Hold and Wait
 No Preemption
 Circular Wait

Mutual exclusion

At least one of the processes involved in the deadlock must claim exclusive control of some of the resources it requires

Hold and wait

Processes can hold the resources that have already been allocated to them while waiting for additional resources

No preemption

Once a resource has been allocated to a process, it cannot be taken away or borrowed from that process until the process is finished with it

Circular wait

- There must be a circular chain of processes such that each process in the chain holds some resources that are needed by the next process in the chain.
 - □ Formal equivalent to what we call a **vicious circle**

Deadlock prevention

- Any system that prevents any of the four necessary conditions for deadlocks will be deadlock-free
- Must find the easiest condition to deny

Denying mutual exclusion

Prevent any process from claiming exclusive control of any the resource

Drawbacks

- □ Many resources can only be used by one process at a time
- □ Cannot hold on a message and send it at the same time

Denying hold and wait

Require processes to get all the resources they will need or none of them

Drawbacks

- Forces processes to acquire ahead of time all the resources they might need
- □ Does not apply the consumable resources such a messages

Allowing preemption

Let processes take away or borrow the resources they need from the processes that hold on them

Drawbacks

- Will result in *lost work* when a process steals storage space from another process
- □ Cannot force processes to send messages

Denying circular wait (I)

- Impose a total order on all resource types and force all processes to follow that order when they acquire new resources
- If a process needs more than one unit of a given resource type it should acquire all of them or none

Denying circular wait (II)

Works very well for resources like CPU and memory

Drawbacks

□ Would force messages to move in only one direction

Processes could not exchange messages

A question

When the leader of the Free French wrote to the White House:
 I am very happy to accept your kind invitation to come to the US

even though no such invitation had been issued, which deadlock condition did he deny?

The answer

He "stole" the invitation message
 He preempted the message that was not (yet) been sent