
Chapter VI
Deadlocks

Jehan-François Pâris
jfparis@uh.edu

Chapter overview

 Deadlocks
 Necessary conditions for deadlocks
 Deadlock prevention

Deadlocks

 A deadlock is said to occur whenever
 Two or more processes are blocked
 Each of these processes is waiting for a resource that is held

by another blocked process.

Examples

 Two friends have exchanged insults
 Each is expecting the other to apologize first

 A rebel group does not want to cease the hostilities before being
recognized by the government
 The government is ready to negotiate but only after the

hostilities have ceased

A graphic view

Alan

Bob

wants

wants
holds on

holds on

Bob’s
Apology

Alan’s
Apology

A graphic view

Sister

Brother

wants

wants
holds on

holds on

Sugar

Milk

A graphic view

Rebels

Gov’nt

wants

wants
holds on

holds on

Peace
Talks

Cease-fire

US and Free French in 1944

US

Free
French

wants

wants
holds on

holds on

Request
to meet

Invitation

Elements

 Processes

 Resources

P

R

Relations

 Process P holds on/owns resource R

 Process P needs/wants resource R

P
owns

R

needs
P R

Serially reusable resources

 Memory space , buffer space, disk space, USB slot to insert a
flash drive

 Exist only in a limited quantity

 One process may have to wait for another process to release the
resources it is currently holding.

Consumable resources

 Cannot be reused

 Messages are best example:

 "Owned" by the process that creates them until it releases
them

 "Wanted" by the process that waits for them

Handling deadlocks

 Do nothing:
Ignore the problem

 Deadlock prevention:
Build deadlock-free systems

 Deadlock avoidance:
Avoid system states that could lead to a deadlock

 Deadlock detection:
Detect and break deadlocks

Handling deadlocks

 Do nothing:
Ignore the problem

 Deadlock prevention:
Build deadlock-free systems

 Deadlock avoidance:
Avoid system states that could lead to a deadlock

 Deadlock detection:
Detect and break deadlocks

Haberman’s conditions

 Four necessary conditions must all be in effect for deadlocks to
happen:

 Mutual Exclusion
 Hold and Wait
 No Preemption
 Circular Wait

Mutual exclusion

 At least one of the processes involved in the deadlock must claim
exclusive control of some of the resources it requires

Hold and wait

 Processes can hold the resources that have already been
allocated to them while waiting for additional resources

No preemption

 Once a resource has been allocated to a process, it cannot be
taken away or borrowed from that process until the process is
finished with it

Circular wait

 There must be a circular chain of processes such that each
process in the chain holds some resources that are needed by the
next process in the chain.
 Formal equivalent to what we call a vicious circle

Deadlock prevention

 Any system that prevents any of the four necessary conditions for
deadlocks will be deadlock-free

 Must find the easiest condition to deny

Denying mutual exclusion

 Prevent any process from claiming exclusive control of any the
resource

 Drawbacks
 Many resources can only be used by one process at a time
 Cannot hold on a message and send it at the same time

Denying hold and wait

 Require processes to get all the resources they will need or none
of them

 Drawbacks
 Forces processes to acquire ahead of time all the resources

they might need
 Does not apply the consumable resources such a messages

Allowing preemption

 Let processes take away or borrow the resources they need
from the processes that hold on them

 Drawbacks
 Will result in lost work when a process steals storage space

from another process
 Cannot force processes to send messages

Denying circular wait (I)

 Impose a total order on all resource types and force all processes
to follow that order when they acquire new resources

 If a process needs more than one unit of a given resource type it
should acquire all of them or none

Denying circular wait (II)

 Works very well for resources like CPU and memory

 Drawbacks
 Would force messages to move in only one direction

 Processes could not exchange messages

A question

 When the leader of the Free French wrote to the White House:
 I am very happy to accept your kind invitation to come to the

US
even though no such invitation had been issued, which deadlock
condition did he deny?

The answer

 He “stole” the invitation message
 He preempted the message that was not (yet) been sent

