
Chapter VI
DEADLOCKS
(short version)

Jehan-François Pâris
jfparis@uh.edu



Overview

 Deadlocks
 Necessary conditions for deadlocks
 Deadlock prevention



Deadlocks

 A deadlock is said to occur whenever
Two or more processes are blocked 
Each of these processes is waiting for a resource that is held 

by another blocked process. 



Examples

 Alice edits file X and needs to access file Y
 Bob edits file Y and needs to access file X

 Process P expects a message from process Q and process Q 
expects a message from process P



A graphic view

Alice

Bob

needs

needs
edits

edits

File Y

File X



A graphic view

P

Q

wants

wants
holds on holds on

Unsent
Message 

Unsent
Message



Elements

 Processes

 Resources

P

R



Relations

 Process P holds on/owns resource R

 Process P needs/wants resource R

P owns R

needs
P R



Serially reusable resources

 Memory space, buffer space, disk space, USB slot to insert a 
flash drive

 Exist only in a limited quantity

 One process may have to wait for another process to release 
the resources it needs.



Consumable resources

 Cannot be reused

 Messages are best example:

"Owned" by the process that creates them until it releases 
them

"Wanted" by the process that waits for them



Handling deadlocks

 Do nothing: 
Ignore the problem

 Deadlock prevention: 
Build deadlock-free systems

 Deadlock avoidance:
Avoid system states that could lead to a deadlock

 Deadlock detection: 
Detect and break deadlocks



Handling deadlocks

 Do nothing: 
Ignore the problem

 Deadlock prevention: 
Build deadlock-free systems

 Deadlock avoidance:
Avoid system states that could lead to a deadlock

 Deadlock detection: 
Detect and break deadlocks



Haberman’s conditions

 Four necessary conditions must all be in effect for deadlocks to 
happen:

Mutual Exclusion
Hold and Wait
No Preemption
Circular Wait



Mutual exclusion

 At least one of the processes involved in the deadlock must claim 
exclusive control of some of the resources it requires

 No sharing



Hold and wait

 Processes can hold the resources that have already been 
allocated to them while waiting for additional resources 



No preemption

 Once a resource has been allocated to a process, it cannot be 
taken away or borrowed from that process until the process is 
finished with it



Circular wait

 There must be a circular chain of processes such that each 
process in the chain holds some resources that are needed by the 
next process in the chain.

 Formal equivalent to what we call a vicious circle



Deadlock prevention

 Any system that prevents any of the four necessary conditions for 
deadlocks will be deadlock-free

 Must find the easiest condition to deny



Denying mutual exclusion

 Prevent any process from claiming exclusive control of any the 
resource 

 Drawbacks
 Many resources can only be used by one process at a time
 Cannot hold on a message and send it at the same time



Denying hold and wait

 Require processes to get all the resources they will need or 
none of them 

 Drawbacks
 Forces processes to acquire ahead of time all the resources 

they might need
 Does not apply the consumable resources such a messages 



Allowing preemption

 Let processes take away or borrow the resources they need 
from the processes that hold on them 

 Drawbacks
Will result in lost work when a process steals storage space 

from another process
Cannot force processes to send messages 



Denying circular wait (I)

 Impose a total order on all resource types and force all 
processes to follow that order when they acquire new resources

 If a process needs more than one unit of a given resource type it 
should acquire all of them or none



Denying circular wait (II)

 Works very well for resources like CPU and memory 

 Drawbacks
Would force messages to move in only one direction

Processes could not exchange messages



A little problem

 Two courses at South Hillcroft University 
are co-requisites of each other:
Sandcastle Design
History of Sandcastles

 Both courses are likely to be oversubscribed
 Think of possible deadlocks
 Post your solutions on Prulu



Check list

 You must understand

Difference between consumable and serially-reusable 
resources

Haberman’s four necessary conditions for deadlocks

The four ways to deny them
Why they do not work for client/server systems


