
Chapter VI
DEADLOCKS
(short version)

Jehan-François Pâris
jfparis@uh.edu



Overview

 Deadlocks
 Necessary conditions for deadlocks
 Deadlock prevention



Deadlocks

 A deadlock is said to occur whenever
Two or more processes are blocked 
Each of these processes is waiting for a resource that is held 

by another blocked process. 



Examples

 Alice edits file X and needs to access file Y
 Bob edits file Y and needs to access file X

 Process P expects a message from process Q and process Q 
expects a message from process P



A graphic view

Alice

Bob

needs

needs
edits

edits

File Y

File X



A graphic view

P

Q

wants

wants
holds on holds on

Unsent
Message 

Unsent
Message



Elements

 Processes

 Resources

P

R



Relations

 Process P holds on/owns resource R

 Process P needs/wants resource R

P owns R

needs
P R



Serially reusable resources

 Memory space, buffer space, disk space, USB slot to insert a 
flash drive

 Exist only in a limited quantity

 One process may have to wait for another process to release 
the resources it needs.



Consumable resources

 Cannot be reused

 Messages are best example:

"Owned" by the process that creates them until it releases 
them

"Wanted" by the process that waits for them



Handling deadlocks

 Do nothing: 
Ignore the problem

 Deadlock prevention: 
Build deadlock-free systems

 Deadlock avoidance:
Avoid system states that could lead to a deadlock

 Deadlock detection: 
Detect and break deadlocks



Handling deadlocks

 Do nothing: 
Ignore the problem

 Deadlock prevention: 
Build deadlock-free systems

 Deadlock avoidance:
Avoid system states that could lead to a deadlock

 Deadlock detection: 
Detect and break deadlocks



Haberman’s conditions

 Four necessary conditions must all be in effect for deadlocks to 
happen:

Mutual Exclusion
Hold and Wait
No Preemption
Circular Wait



Mutual exclusion

 At least one of the processes involved in the deadlock must claim 
exclusive control of some of the resources it requires

 No sharing



Hold and wait

 Processes can hold the resources that have already been 
allocated to them while waiting for additional resources 



No preemption

 Once a resource has been allocated to a process, it cannot be 
taken away or borrowed from that process until the process is 
finished with it



Circular wait

 There must be a circular chain of processes such that each 
process in the chain holds some resources that are needed by the 
next process in the chain.

 Formal equivalent to what we call a vicious circle



Deadlock prevention

 Any system that prevents any of the four necessary conditions for 
deadlocks will be deadlock-free

 Must find the easiest condition to deny



Denying mutual exclusion

 Prevent any process from claiming exclusive control of any the 
resource 

 Drawbacks
 Many resources can only be used by one process at a time
 Cannot hold on a message and send it at the same time



Denying hold and wait

 Require processes to get all the resources they will need or 
none of them 

 Drawbacks
 Forces processes to acquire ahead of time all the resources 

they might need
 Does not apply the consumable resources such a messages 



Allowing preemption

 Let processes take away or borrow the resources they need 
from the processes that hold on them 

 Drawbacks
Will result in lost work when a process steals storage space 

from another process
Cannot force processes to send messages 



Denying circular wait (I)

 Impose a total order on all resource types and force all 
processes to follow that order when they acquire new resources

 If a process needs more than one unit of a given resource type it 
should acquire all of them or none



Denying circular wait (II)

 Works very well for resources like CPU and memory 

 Drawbacks
Would force messages to move in only one direction

Processes could not exchange messages



A little problem

 Two courses at South Hillcroft University 
are co-requisites of each other:
Sandcastle Design
History of Sandcastles

 Both courses are likely to be oversubscribed
 Think of possible deadlocks
 Post your solutions on Prulu



Check list

 You must understand

Difference between consumable and serially-reusable 
resources

Haberman’s four necessary conditions for deadlocks

The four ways to deny them
Why they do not work for client/server systems


