
Chapter VII

Memory Management

(short version)

Jehan-François Pâris

jfparis@uh.edu



Chapter Overview

◼ A very brief survey on how older systems managed their main 

memory

Explains why modern systems use virtual memory



The very early computers

◼ No OS and no memory management 

◼ Programmers

Had access to whole main memory of the computer 

Had to enter the bootstrapping routine loading their programs 

into main memory

◼Time-consuming and error-prone.



Uniprogramming systems

◼ Had a memory-resident monitor 

◼ Invoked every time a user program 

would terminate 

◼ Would immediately fetch the next 

program in the queue 

Batch processing

The

User 

Program

Monitor



The good and the bad

◼ Advantage:

No time was lost re-entering manually the bootstrapping routine

◼ Disadvantage:

CPU remained idle every time the user program does an I/O.



Multiprogramming with fixed partitions

◼ OS dedicated multiple partitions for user 

processes

Partition boundaries were fixed

Monitor

FG

BG0

BG1



The good and the bad

◼ Advantage:

No CPU time is lost while system does I/O

◼ Disadvantages:

Partitions were fixed while processes have different memory 

requirements

Many systems required processes to occupy a specific 

partition



Multiprogramming with variable 

partitions

◼ No fixed partitions

Much more flexible memory allocation

◼ OS allocates contiguous extents of memory to processes

Wherever it can find available space

◼ Address translation mechanism lets swapped out processes

return to any main memory location



Monitor

Multiprogramming with variable partitions

◼ Initially everything works fine

Three processes occupy most of 

memory

Unused part of memory is very small
P0

P2

P1



Monitor

Multiprogramming with variable 

partitions

◼ When P0 terminates

Replaced by P3

 P3 must be smaller than P0

◼ Start wasting memory space

P3

P2

P1

P3

P2

P1



Monitor

Multiprogramming with variable 

partitions

◼ When P2 terminates

Replaced by P4

 P4 must be smaller than process 

it replaces plus the free space

◼ We waste more memory space

P3

P4

P1



The bad news: External fragmentation

◼ Happens in all systems using multiprogramming with variable 

partitions

◼ Occurs because new process must fit in the hole left by terminating 

process

Typically the new process will be a bit smaller than the 

terminating process

Creates many small unusable fragments



An Analogy

◼ Replacing an old book by a new book on a bookshelf

◼ New book must fit in the hole left by old book

Very low probability that both books have exactly the same 

width

We will end with empty shelf space between books

◼ Solution it to push books left and right



Monitor

Memory compaction

◼ When external fragmentation 

becomes a problem 

Push processes around in order to 

consolidate free spaces

◼ Worked well with small memory 

sizes

P3

P1

P4



Monitor

Memory compaction

◼ When external fragmentation 

becomes a problem 

Push processes around in order to 

consolidate free spaces

◼ Worked well with small memory 

sizes

P3

P1

P4



Non-contiguous memory allocation

◼ Non-contiguous allocation

Partition physical memory into fixed-size entities

◼Page frames

Allocate non-contiguous page frames to processes

Let MMU handle the address translation



Non-contiguous allocation 

Single

process

address

space



Virtual v. real

◼ Processes are provided with the illusion of a vast linear address 

space

Virtual addresses starting at address zero

◼ In reality, this address space is made up of disjoint page frames

Non-contiguous real addresses


