Chapter VIi

Memory Management
(short version)

Jehan-Francois Paris
jfparis@uh.edu



-
Chapter Overview

= Avery brief survey on how older systems managed their main
memory

[1Explains why modern systems use virtual memory



=
The very early computers

m No OS and no memory management

m Programmers
[1Had access to whole main memory of the computer

[1Had to enter the bootstrapping routine loading their programs
into main memory

= [ime-consuming and error-prone.



"
Uniprogramming systems

® Had a memory-resident monitor

m Invoked every time a user program
would terminate

= Would immediately fetch the next
program in the queue

1Batch processing

Monitor

The
User
Program




= Emmm—
The good and the bad

= Advantage:
[1No time was lost re-entering manually the bootstrapping routine

m Disadvantage:
1CPU remained idle every time the user program does an |/O.




= SEE—

Multiprogramming with fixed partitions

m OS dedicated multiple partitions for user -
processes

1Partition boundaries were fixed

FG

BG1




=
The good and the bad

m Advantage:
[INo CPU time is lost while system does I/O

m Disadvantages:

1 Partitions were fixed while processes have different memory
requirements

[1Many systems required processes to occupy a specific
partition




=
Multiprogramming with variable
partitions

= No fixed partitions
1Much more flexible memory allocation

m OS allocates contiguous extents of memory to processes
COWherever it can find available space

m Address translation mechanism lets swapped out processes
return to any main memory location



= S

Multiprogramming with variable partitions

= Initially everything works fine

1 Three processes occupy most of
memory

O Unused part of memory is very small




= S
Multiprogramming with variable
partitions

= When PO terminates -

1Replaced by P3
0 P3 must be smaller than PO
= Start wasting memory space




= SEE——

Multiprogramming with variable

partitions

= \When P2 terminates
[1Replaced by P4

1 P4 must be smaller than process
it replaces plus the free space

= We waste more memory space

P3




= mmmm—
The bad news: External fragmentation

m Happens in all systems using multiprogramming with variable
partitions

m Occurs because new process must fit in the hole left by terminating
process

1 Typically the new process will be a bit smaller than the
terminating process

1Creates many small unusable fragments



= Emmm—
An Analogy

m Replacing an old book by a new book on a bookshelf

= New book must fit in the hole left by old book

1Very low probability that both books have exactly the same
width

OWe will end with empty shelf space between books

m Solution it to push books left and right



"
Memory compaction

® When external fragmentation
becomes a problem

1Push processes around in order to
consolidate free spaces

m Worked well with small memory
sizes

Monitor

P3

P1

P4




"
Memory compaction

® When external fragmentation
becomes a problem

1Push processes around in order to
consolidate free spaces

m Worked well with small memory
sizes

Monitor

P3

P1

P4




=
Non-contiguous memory allocation

m Non-contiguous allocation
1Partition physical memory into fixed-size entities
= Page frames
1Allocate non-contiguous page frames to processes
1Let MMU handle the address translation



" S
Non-contiguous allocation

. : process :
.- : address




=
Virtual v. real

m Processes are provided with the illusion of a vast linear address
space

C1Virtual addresses starting at address zero

® In reality, this address space is made up of disjoint page frames
[1Non-contiguous real addresses



