
Chapter VII
Memory Management
(short version)

Jehan-François Pâris
jfparis@uh.edu



Chapter Overview

 A very brief survey on how older systems managed their main 
memory
Explains why modern systems use virtual memory

 A shorter version of what is typically covered
Compensates for a lost week of classes



The very early computers

 No OS and no memory management 

 Programmers
Had access to whole main memory of the computer 
Had to enter the bootstrapping routine loading their programs 

into main memory
Time-consuming and error-prone.



Uniprogramming systems

 Had a memory-resident monitor 

 Invoked every time a user program 
would terminate 

 Would immediately fetch the next 
program in the queue 
Batch processing

The
User 

Program

Monitor



The good and the bad

 Advantage:
No time was lost re-entering manually the bootstrapping routine

 Disadvantage:
CPU remained idle every time the user program does an I/O.



Multiprogramming with fixed partitions

 OS dedicated multiple partitions for user 
processes
Partition boundaries were fixed

Monitor

FG

BG0

BG1



The good and the bad

 Advantage:
No CPU time is lost while system does I/O

 Disadvantages:
Partitions were fixed while processes have different memory 

requirements
Many systems required processes to occupy a specific 

partition



Multiprogramming with variable 
partitions
 No fixed partitions
Much more flexible memory allocation

 OS allocates contiguous extents of memory to processes
Wherever it can find available space

 Address translation mechanism lets swapped out processes
return to any main memory location



Monitor

Multiprogramming with variable partitions

 Initially everything works fine
Three processes occupy most of 

memory
Unused part of memory is very small

P0

P2

P1



Monitor

Multiprogramming with variable 
partitions

 When P0 terminates
Replaced by P3
 P3 must be smaller than P0

 Start wasting memory space

P3

P2

P1

P3

P2

P1



Monitor

Multiprogramming with variable 
partitions

 When P2 terminates
Replaced by P4
 P4 must be smaller than process 

it replaces plus the free space
 We waste more memory space

P3

P4

P1



The bad news: External fragmentation

 Happens in all systems using multiprogramming with variable 
partitions

 Occurs because new process must fit in the hole left by terminating 
process
Typically the new process will be a bit smaller than the 

terminating process
Creates many small unusable fragments



An Analogy

 Replacing an old book by a new book on a bookshelf

 New book must fit in the hole left by old book
Very low probability that both books have exactly the same 

width
We will end with empty shelf space between books

 Solution it to push books left and right



Monitor

Memory compaction

 When external fragmentation 
becomes a problem 
Push processes around in order to 

consolidate free spaces

 Worked well with small memory
sizes

P3

P1
P4



Monitor

Memory compaction

 When external fragmentation 
becomes a problem 
Push processes around in order to 

consolidate free spaces

 Worked well with small memory
sizes

P3

P1
P4



Non-contiguous memory allocation

 Non-contiguous allocation
Partition physical memory into fixed-size entities

Page frames
Allocate non-contiguous page frames to processes
Let MMU handle the address translation



Non-contiguous allocation 

Single
process
address
space



Virtual v. real

 Processes are provided with the illusion of a vast linear address 
space
Virtual addresses starting at address zero

 In reality, this address space is made up of disjoint page frames
Non-contiguous real addresses


