
Chapter VII

Memory Management

Jehan-François Pâris

jfparis@uh.edu

Chapter Overview

◼ A review of classical approaches to memory

management

Follows the evolution of operating systems

from the fifties to the eighties

Solution 0

◼ No memory management

◼ The very first computers had no operating

system whatsoever

◼ Each programmer

Had access to whole main memory of the

computer

Had to enter the bootstrapping routine loading

his or her program into main memory.

Solution 0

◼ Advantage:

Programmer is in total control of the whole

machine.

◼ Disadvantage:

Much time is lost entering manually the

bootstrapping routine.

Solution 1

◼ Uniprogramming

◼ Every system includes a memory-resident

monitor

 Invoked every time a user program would

terminate

Would immediately fetch the next program in

the queue (batch processing)

Solution 1

◼ Should prevent user

program from

corrupting the kernel

◼ Must add a Memory

Management

Unit (MMU)

Monitor

Solution 1

◼ Assuming that the monitor occupies memory

locations 0 to START – 1

◼ MMU will prevent the program from accessing

memory locations 0 to START – 1

MMU for solution 1

RAM Address

 START

YES

NO
trap

Solution 1

◼ Advantage:

No time is lost re-entering manually the

bootstrapping routine

◼ Disadvantage:

CPU remains idle every time the user

program does an I/O.

Solution 2

◼ Multiprogramming with fixed partitions

Requires I/O controllers and interrupts

◼ OS dedicates multiple partitions for user

processes

Partition boundaries are fixed

◼ Each process must be confined between its

first and last address

Solution 2

◼ Computer often had

A foreground partition

(FG)

Several background

partitions

(BG0, . . .)

Monitor

FG

BG0

BG1

MMU for solution 2

RAM Address

 FIRST

NO

trap

≤ LAST

YES

NO
trap

YES

Solution 2

◼ Advantage:

No CPU time is lost while system does I/O

◼ Disadvantages:

Partitions are fixed while processes have

different memory requirements

Many systems were requiring processes to

occupy a specific partition

Solution 3

◼ Multiprogramming with variable partitions

◼ OS allocates contiguous extents of memory to

processes

 Initially each process gets all the memory

space it needs and nothing more

◼ Processes that are swapped out can return to

any main memory location

Monitor

Solution 3

◼ Initially everything works fine

Three processes occupy

most of memory

Unused part of memory is

very small

P0

P1

P2

Monitor

Solution 3

◼ When P0 terminates

Replaced by P3

 P3 must be smaller

than P0

◼ Start wasting memory

space

P3

P1

P2

Monitor

Solution 3

◼ When P2 terminates

Replaced by P4

 P4 must be smaller

than P2 plus the free

space

◼ wasting more memory

space

P3

P1

P4

External fragmentation

◼ Happens in all systems using multiprogramming

with variable partitions

◼ Occurs because new process must fit in the hole

left by terminating process

Very low probability that both process will

have exactly the same size

Typically the new process will be a bit smaller

than the terminating process

An Analogy

◼ Replacing an old book by a new book on a

bookshelf

◼ New book must fit in the hole left by old book

Very low probability that both books have

exactly the same width

We will end with empty shelf space between

books

◼ Solution it to push books left and right

Monitor

Memory compaction

◼ When external

fragmentation becomes

a problem, we push

processes around in

order to consolidate free

spaces

P3

P1

P4

Monitor

Memory compaction

◼ Works very well when

memory sizes were

small
P3

P1

P4

FREE

Dynamic address translation

◼ Processes do not occupy fixed locations in main

memory

Will let them run as if they were starting at

location 0

MMU hardware will add the right offset

Will test first that the process does not try to

access anything outside its boundaries

MMU for solution 3

START Address

RAM Address

 SIZE
NO

trap

Adder

YES

Is it virtual or real?

◼ MMU translates

Virtual addresses used by the process

into

Real addresses in main memory

An analogy

◼ Living or visiting places that makes us believe

we are in a different country

Little Italy in San Francisco, Bazaar del

Mundo in San Diego, Chinatown everywhere

Subdivisions with “romantic” Spanish names

in California

 Streets with names of Ivy League schools or

towns hosting them (Amherst, . . .)

Another way to look at it

START Address

Virtual Address

 SIZE

YES

NO

trap

Adder

Physical Address

Solution 4

◼ Non-contiguous allocation

Partition main memory into fixed-size entities

◼Page frames

Allocate non-contiguous page frames to

processes

Let the MMU take care of the address

translation

Non-contiguous allocation

Single

process

address

space

Virtual v. real

◼ Processes are provided with the illusion of a vast

linear address space

Virtual addresses starting at address zero

◼ In reality, this address space is made up of

disjoint page frames

Non-contiguous real addresses

