
Chapter VII

Memory Management

Jehan-François Pâris

jfparis@uh.edu

Chapter Overview

◼ A review of classical approaches to memory

management

Follows the evolution of operating systems

from the fifties to the eighties

Solution 0

◼ No memory management

◼ The very first computers had no operating

system whatsoever

◼ Each programmer

Had access to whole main memory of the

computer

Had to enter the bootstrapping routine loading

his or her program into main memory.

Solution 0

◼ Advantage:

Programmer is in total control of the whole

machine.

◼ Disadvantage:

Much time is lost entering manually the

bootstrapping routine.

Solution 1

◼ Uniprogramming

◼ Every system includes a memory-resident

monitor

 Invoked every time a user program would

terminate

Would immediately fetch the next program in

the queue (batch processing)

Solution 1

◼ Should prevent user

program from

corrupting the kernel

◼ Must add a Memory

Management

Unit (MMU)

Monitor

Solution 1

◼ Assuming that the monitor occupies memory

locations 0 to START – 1

◼ MMU will prevent the program from accessing

memory locations 0 to START – 1

MMU for solution 1

RAM Address

 START

YES

NO
trap

Solution 1

◼ Advantage:

No time is lost re-entering manually the

bootstrapping routine

◼ Disadvantage:

CPU remains idle every time the user

program does an I/O.

Solution 2

◼ Multiprogramming with fixed partitions

Requires I/O controllers and interrupts

◼ OS dedicates multiple partitions for user

processes

Partition boundaries are fixed

◼ Each process must be confined between its

first and last address

Solution 2

◼ Computer often had

A foreground partition

(FG)

Several background

partitions

(BG0, . . .)

Monitor

FG

BG0

BG1

MMU for solution 2

RAM Address

 FIRST

NO

trap

≤ LAST

YES

NO
trap

YES

Solution 2

◼ Advantage:

No CPU time is lost while system does I/O

◼ Disadvantages:

Partitions are fixed while processes have

different memory requirements

Many systems were requiring processes to

occupy a specific partition

Solution 3

◼ Multiprogramming with variable partitions

◼ OS allocates contiguous extents of memory to

processes

 Initially each process gets all the memory

space it needs and nothing more

◼ Processes that are swapped out can return to

any main memory location

Monitor

Solution 3

◼ Initially everything works fine

Three processes occupy

most of memory

Unused part of memory is

very small

P0

P1

P2

Monitor

Solution 3

◼ When P0 terminates

Replaced by P3

 P3 must be smaller

than P0

◼ Start wasting memory

space

P3

P1

P2

Monitor

Solution 3

◼ When P2 terminates

Replaced by P4

 P4 must be smaller

than P2 plus the free

space

◼ wasting more memory

space

P3

P1

P4

External fragmentation

◼ Happens in all systems using multiprogramming

with variable partitions

◼ Occurs because new process must fit in the hole

left by terminating process

Very low probability that both process will

have exactly the same size

Typically the new process will be a bit smaller

than the terminating process

An Analogy

◼ Replacing an old book by a new book on a

bookshelf

◼ New book must fit in the hole left by old book

Very low probability that both books have

exactly the same width

We will end with empty shelf space between

books

◼ Solution it to push books left and right

Monitor

Memory compaction

◼ When external

fragmentation becomes

a problem, we push

processes around in

order to consolidate free

spaces

P3

P1

P4

Monitor

Memory compaction

◼ Works very well when

memory sizes were

small
P3

P1

P4

FREE

Dynamic address translation

◼ Processes do not occupy fixed locations in main

memory

Will let them run as if they were starting at

location 0

MMU hardware will add the right offset

Will test first that the process does not try to

access anything outside its boundaries

MMU for solution 3

START Address

RAM Address

 SIZE
NO

trap

Adder

YES

Is it virtual or real?

◼ MMU translates

Virtual addresses used by the process

into

Real addresses in main memory

An analogy

◼ Living or visiting places that makes us believe

we are in a different country

Little Italy in San Francisco, Bazaar del

Mundo in San Diego, Chinatown everywhere

Subdivisions with “romantic” Spanish names

in California

 Streets with names of Ivy League schools or

towns hosting them (Amherst, . . .)

Another way to look at it

START Address

Virtual Address

 SIZE

YES

NO

trap

Adder

Physical Address

Solution 4

◼ Non-contiguous allocation

Partition main memory into fixed-size entities

◼Page frames

Allocate non-contiguous page frames to

processes

Let the MMU take care of the address

translation

Non-contiguous allocation

Single

process

address

space

Virtual v. real

◼ Processes are provided with the illusion of a vast

linear address space

Virtual addresses starting at address zero

◼ In reality, this address space is made up of

disjoint page frames

Non-contiguous real addresses

