CHAPTER VIII VIRTUAL MEMORY REVIEW QUESTIONS

Jehan-François Pâris jfparis@uh.edu

Chapter overview

■ Virtual Memory
\square Address translation
\square On-demand fetch

- Page table organization
- Page replacement policies
\square Performance issues

Problem

- A computer has 32 bit addresses and a virtual memory with a page size of 8 kilobytes.
\square How many bits are used by the byte offset?
\square What is the size of a page table?

First part

- A computer has 32 bit addresses and a virtual memory with a page size of 8 kilobytes.
\square How many bits are used by the byte offset?

Solution

- A computer has 32 bit addresses and a virtual memory with a page size of 8 kilobytes.
\square How many bits are used by the byte offset?
- 8 kilobytes $=2^{13}$ bytes
- The byte offset uses 13 bits

Second part

- A computer has 32 bit addresses and a virtual memory with a page size of 8 kilobytes.
\square What is the size of a page table?

Solution

- A computer has 32 bit addresses and a virtual memory with a page size of 8 kilobytes.
\square What is the size of a page table?
- Since the byte offset uses 13 bits, the page number will use 32-13 = 19 bits
- Page tables will have $2^{19}=512 \mathrm{~K}$ entries

Problem

A computer system has 32-bit addresses and a page size of 4 kilobytes.
\square What is the maximum number of pages a process can have?
\square How many bits of the virtual address will remain unchanged during the address translation process?

First part

A computer system has 32-bit addresses and a page size of 4 kilobytes.
\square What is the maximum number of pages a process can have?

Solution

- A computer system has 32-bit addresses and a page size of 4 kilobytes.
\square What is the maximum number of pages a program can have?
- We divide the size of the virtual address space by the page size:

$$
2^{32} B / 4 K B=2^{32} / 2^{12}=2^{20}=1 M
$$

Second part

A computer system has 32-bit addresses and a page size of 4 kilobytes.
\square How many bits of the virtual address will remain unchanged during the address translation process?

Solution

- A computer system has 32-bit addresses and a page size of 4 kilobytes.
\square How many bits of the virtual address will remain unchanged during the address translation process?
- Since the page size is $4 K B=2^{12} B$, the 12 least significant bits of the virtual address will remain unchanged.

Problem

An old virtual memory system has 512 MB of main memory, a virtual address space of 4 GB and a page size of 2 KB . Each page table entry occupies 4 bytes.
\square How many bits of the virtual address will remain unchanged by the address translation process?
\square What is the size of a page table?
\square How many page frames are there in main memory?

First part

An old virtual memory system has 512 MB of main memory, a virtual address space of 4 GB and a page size of 2 KB . Each page table entry occupies 4 bytes.
\square How many bits of the virtual address will remain unchanged by the address translation process?

Solution

- An old virtual memory system has 512 MB of main memory, a virtual address space of 4 GB and a page size of 2 KB . Each page table entry occupies 4 bytes.
\square How many bits of the virtual address will remain unchanged by the address translation process?
- Since the page size is $2 K B=2^{11} \mathrm{~B}$, the 11 least significant bits of the virtual address will remain unchanged

Second part

An old virtual memory system has 512 MB of main memory, a virtual address space of 4 GB and a page size of 2 KB . Each page table entry occupies 4 bytes.
\square What is the size of a page table?

Solution

An old virtual memory system has 512 MB of main memory, a virtual address space of 4 GB and a page size of 2 KB . Each page table entry occupies 4 bytes.
\square What is the size of a page table?
\square We divide the size of the virtual address space by the page size:
$4 G B / 2 K B=2^{32} / 2^{11}=2^{21}$ entries or
$2^{21} \times 4 B=2{ }^{23} B=8 M B$

Third part

A virtual memory system has 512 MB of main memory, a virtual address space of 4 GB and a page size of 2 KB . Each page table entry occupies 4 bytes.
\square How many page frames are there in main memory?

Solution

An old virtual memory system has 512 MB of main memory, a virtual address space of 4 GB and a page size of 2 KB . Each page table entry occupies 4 bytes.
\square How many page frames are there in main memory?

- We divide the size of the main memory by the page size: $512 \mathrm{MB} / 2 \mathrm{~KB}=2^{29} / 2^{11}=2^{18}=256 \mathrm{~K}$ page frames.

Problem

Given the following page reference string

$$
0111011100020
$$

and a very small memory that can only accommodate two pages, how many page faults will occur if the memory is managed
A. By a FIFO policy
B. By an LRU policy

Answer (I)

- Given the following page reference string

$$
01101100020
$$

and a very small memory that can only accommodate two pages, the FIFO policy will cause four page faults

- Fetch page 0
- Fetch page 1
- Fetch page 2 and expel page 0
- Fetch again page 0 and expel page 1

Answer (II)

- Given the following page reference string

$$
0110110020
$$

and a very small memory that can only accommodate two pages, the LRU policy will cause three page faults

- Fetch page 0
- Fetch page 1
- Fetch page 2 and expel page 1

More review questions

True or false

- A computer will never have a page referenced bit and a missing bit
- The dirty bit indicates whether a page has been recently accessed
- A page fault rate of one page fault per one thousand references is a good page fault rate
- A TLB miss rate of one miss per one thousand references is a good miss rate

Solution (I)

- A computer will never have a page referenced bit and a missing bit FALSE
- The dirty bit indicates whether a page has been recently accessed
- A page fault rate of one page fault per one thousand references is a good page fault rate
- A TLB miss rate of one miss per one thousand references is a good miss rate

Solution (II)

- A computer will never have a page referenced bit and a missing bit FALSE
- The dirty bit indicates whether a page has been recently accessed FALSE
- A page fault rate of one page fault per one thousand references is a good page fault rate
- A TLB miss rate of one miss per one thousand references is a good miss rate

Solution (III)

- A computer will never have a page referenced bit and a missing bit FALSE
- The dirty bit indicates whether a page has been recently accessed FALSE
- A page fault rate of one page fault per one thousand references is a good page fault rate FALSE
- A TLB miss rate of one miss per one thousand references is a good miss rate

Solution (IV)

- A computer will never have a page referenced bit and a missing bit FALSE
- The dirty bit indicates whether a page has been recently accessed FALSE
- A page fault rate of one page fault per one thousand references is a good page fault rate
FALSE
- A TLB miss rate of one miss per one thousand references is a good miss rate TRUE

Page table organization

- Which page table organization allows entire page tables to reside in main memory?

■ How is it possible?

Answer

- Which page table organization allows entire page tables to reside in main memory?
\square Inverted page tables
■ How is it possible?
\square Inverted page tables only keep track of the pages that are present in main memory.

Page Replacement Policies

- Among the five following page replacement policies:

Local LRU, Global LRU, Berkeley Clock, Mach and Windows
Which one(s)
\square Support real-time processes?
\square Simulate a page-referenced bit ?
\square Are partially based on the FIFO policy ?

First part

- Among the five following page replacement policies:

Local LRU, Global LRU, Berkeley Clock, Mach and Windows
\square Which one(s) support real-time processes?

Solution

- Among the five following page replacement policies:

Local LRU, Global LRU, Berkeley Clock, Mach and Windows
\square Which one(s) support real-time processes?

- Windows because each process has a fixed-size minimum resident set.

Second part

- Among the five following page replacement policies:

Local LRU, Global LRU, Berkeley Clock, Mach and Windows
\square Which one(s) simulate a page-referenced bit ?

Solution

- Among the five following page replacement policies:

Local LRU, Global LRU, Berkeley Clock, Mach and Windows
\square Which one(s) simulate a page-referenced bit?

- Berkeley UNIX is the only one.

Third part

- Among the five following page replacement policies:
- Local LRU, Global LRU, Berkeley Clock, Mach and Windows
\square Which one(s) are partially based on the FIFO ?

Solution

- Among the five following page replacement policies:
- Local LRU, Global LRU, Berkeley Clock, Mach and Windows
\square Which one(s) are partially based on the FIFO ?
- Mach and Windows.

Page Replacement Policies

- Give examples of
\square Very bad page replacement policies?
\square Policies that are too costly to implement?
\square Good policies that do not require any hardware support?

Solution (I)

- Give examples of
\square Very bad page replacement policies?
Local FIFO, Global FIFO
\square Policies that are too costly to implement?
\square Good policies that do not require any hardware support?

Solution (II)

- Give examples of
\square Very bad page replacement policies?
Local FIFO, Global FIFO
\square Policies that are too costly to implement?
Local LRU, Global LRU, Working Set
\square Good policies that do not require any hardware support?

Solution (III)

- Give examples of
\square Very bad page replacement policies?
Local FIFO, Global FIFO
\square Policies that are too costly to implement?
Local LRU, Global LRU, Working Set
\square Good policies that do not require any hardware support?
Mach, Berkeley Clock, Windows

