Chapter VII|

Virtual Memory

©Jehan-Francois Paris
jfparis@uh.edu

= aEmmmm——
Chapter overview

m Basics
1 Address translation
1 On-demand fetch

m Page table organization
m Page replacement policies

= Virtual memory tuning

Basics

=
Virtual memory

m Combines two big ideas

1 Non-contiquous memory allocation:
processes are allocated page frames scattered all over the
main memory

1 On-demand fetch:
Process pages are brought in main memory when they are
accessed for the first time

= MMU takes care of almost everything

= Emmm—
Main memory

m Divided into fixed-size page frames
1 Allocation units
1 Sizes are powers of 2 (512B, 1KB, 2KB, 4KB)
1 Properly aligned
0 Numbered 0,1, 2, ...

= Emmm—
Process address space

m Divided into fixed-size pages
[1 Same sizes as page frames
1 Properly aligned
1 Also numbered 0,1, 2, . . .

=
The mapping

= Will allocate non-contiguous page frames to the pages of a
process

- Emmm——
The mapping (1)

Page Number

Frame number

0 0
1 4
2 2

= mmmm—
The mapping (Il)

m Assuming 1KB pages and page frames

Virtual Addresses

Physical Addresses

0 to 1,023 0 to 1,023
1,024 to 2,047 4,096 to 5,119
2,048 to 3,071 2,048 to 3,071

=
The mapping (llI)

m Observing that 219 = 1000000000 in binary
m We will write 0-0 for ten zeroes and 1-1 for ten ones

Virtual Addresses Physical Addresses
000 0-0 to 000 1-1 000 0-0 to 0001-1
001 0-0 to 001 1-1 100 0-0 to 100 1-1
010 0-0 to 010 1-1 010 0-0 to 010 1-1

=
The mapping (V)

m The ten least significant bits of the address do not change

Virtual Addresses Physical Addresses
000 0-0 to 000 1-1 000 0-0 to 000 1-1

001 0-0 to 001 1-1 100 0-0 to 100 1-1
010 0-0 to 010 1-1 010 0-0 to 010 1-1

gie

The mapping (V)

® Must only map page numbers into page frame numers

Page number

Page frame number

000 000
001 100
010 010

= Emmm——
The mapping (V)

® Same mapping, but in decimal

Page number

Page frame number

0 0
1 4
2 2

- Emmmm——
The mapping (VI)

m Since page numbers are always in sequence, they are

redundant

Page frame number

0

4

2

=
The algorithm

= Assume page size = 2P

m Chop p least significant bits from virtual address to obtain the
page number

= Use page number to find corresponding page frame number in
page table

®m Append p least significant bits from virtual address to page frame
number to get physical address

e

Realization

Page No Offset

Virtual Address | 2 | 897 |
1 PAGE
3 | TABLE (unchanged)
5
14

Physical Address | 5 | 897 |

Frame No Offset

= Emmm—
The offset

m Offset contains all bits that remain unchanged through the
address translation process

®= Function of page size

Page size Offset

1KB 10 bits
2 KB 11 bits
4KB 12 bits

=
The page number

m Contains other bits of virtual address
m With old 32-bit addresses

Page size Offset Page number
1KB 10 bits 22 bits
2KB 11 bits 21 bits
4KB 12 bits 20 bits

gie

With the newer 64 bit addresses

m Current processor limitations allow for 48 address lines

1 Can address24® bytes = 256 Terabytes

Page size

Offset

Page number

4KB

12 bits

36 bits

gl

Windows x64 virtual addresses
m Restricted to 256 TB(48-bit addresses)

0 Lower 128 TB are available as private address space for user
processes

1 Upper 128 TB are system space

. : N
Maximum process address space is 24" bytes,

that is, 0.00076 percent of the theoretical limit
9 of 254 bytes.

)

gl

Windows x86 virtual addresses

m 32 bit addresses allow us to access 4GB
= By default

0 Lower 2 GB are available as private address space for user
processes

1 Upper 2 GB are system space
= But

1 Can give up to 3GB to user processes

1 Complex extension mechanism allowing x86 systems to use
more than 4 GB of RAM

=
Internal fragmentation

m Each process now occupies an integer number of pages
m Actual process space is not a round number

1 Last page of a process is rarely full
= On the average, half a page is wasted

1 Not a big issue

1 Internal fragmentation

= Emmm—
On-demand fetch (I)

m Most processes terminate without having accessed their whole
address space

1 Code handling rare error conditions, . . .

m Other processes go to multiple phases during which they access
different parts of their address space

0 Compilers

= mmmm—
On-demand fetch (lI)

® VM systems do not fetch whole address space of a process when
it is brought into memory

m They fetch individual pages on demand when they get accessed
the first time

1 Page miss or page fault

= When memory is full, they expel from memory pages that are not
currently in use

=
On-demand fetch (l1)

m The pages of a process that are not in main memory reside on
disk
1 In the executable file for the program being run for the pages
In the code segment

1 In a special swap area for the data pages that were expelled
from main memory

= SRS
On-demand fetch (1V)

LN

Disk/SSD

= mmmm—
On-demand fetch (V)

m WWhen a process tries to access data that are nor present in main
memory

1 MMU hardware detects that the page is missing and causes
an interrupt

O Interrupt wakes up page fault handler

1 Page fault handler puts process in blocked state and brings
missing page in main memory

= Emmm—
The swap area

m On disk or SSD

® Where the VM stores expelled data pages that contain data that
must be saved

1 Contain data created/modified by the process
1 Said to be dirty

= No code segment pages
1 Always write-protected
1 Sharedwith other processes executing the same programmer

= Emmm—
Advantages

® VM systems use main memory more efficiently than other memory
management schemes

1 Give to each process more or less what it needs

m Process sizes are not limited by the size of main memory
1 Greatly simplifies program organization

= Emmm——
Sole disadvantage

m Bringing pages from disk is a relatively slow operation
1 Takes milliseconds while memory accesses take nanoseconds
= Ten thousand times to hundred thousand times slower

= Emmm——
The cost of a page fault

m Let
0 T,, be the main memory access time
O T, the disk access time
1 fthe page fault rate
1 T, the average access time of the VM

m We have
OT,=(1-fT_ +f(T +T,) =T, +fT,

=
Example

m AssumeT,_,=70ns and T~/ ms

f T,
103 =70ns + 7Tms/103 = 7,070ns
104 = 70ns + 7ms/104 = 770ns
10 = 70ns + 7Tms/10° = 140ns
10 =70ns + 7Tms/10° = 77ns

gie

Replacing the disk by an SSD

m AssumeT,, =70 ns and Tggp = 70 ps

f

T

a

10-3

= 70ns + 70us/103 = 140ns

104

=70ns + 70us/10% =77ns

10

= 70ns + 70us/10° = 70.7ns

100

=70ns + 70us/10% = 70.07ns

= Emmmm—
Locality principle (I)

m A process that would access its pages in a totally unpredictable
fashion would perform very poorly in a VM system unless all its
pages are in main memory

=
Locality principle (Il)

m Process P accesses randomly a very large array
[1 n pages

= If m of these n pages are in main memory,
the page fault frequency of the process will be (n— m)/n

m Must switch to another algorithm

= Emmm—
Locality principle (lll)

m Fortunately for us most programs obey the locality principle

1 They access at any time a small fraction of their address space
m Spatial locality

1 They tend to reference again the pages they have recently
referenced

= Temporal locality

=
Tuning considerations

= In order to achieve an acceptable performance,
a VM system must ensure that each process has in main memory

all the pages it is currently referencing

® When this is not the case, the system performance will quickly
collapse

Page Table Representations

= Emmm—
Page table entries

= A page table entry (PTE) contains
1A page frame number
0 Several special bits
m Assuming 64-bit addresses, all fit into eight bytes

Page frame number Bits

= Emmmm——
The special bits (I)

m Present bit/Valid bit :
11 if page is in main memory,
1 0 otherwise

m Missing bit:
1 1 if page is in not main memory,
1 0 otherwise

=
The special bits (II)

= Dirty bit:

11 if page has been modified since it was brought into main
memory,

10 otherwise

m A dirty page must be saved in the process swap area on disk
before being expelled from main memory

m A clean page can be immediately expelled

= Emmm——
The special bits (ll1)

m Page-referenced bit:
11 if page has been recently accessed,
10 otherwise

m Not present on manycomputers
1 Can be simulated in software

=
Where to store page tables

m Use a three-level approach
m Store parts of page table

1 In high speed registers located in the MMU:
the translation lookaside buffer (TLB)
(good solution)

1 In main memory (bad solution)
1 On disk (ugly solution)

= S
The translation look aside buffer

= Small high-speed memory
1 Contains fixed number of PTEs
1 Content-addressable memory
m Entries include page frame number and page number

=
TLB misses

m When a PTE cannot be found in the TLB,
a TLB miss is said to occur

m [LB misses can be handled
1 By the computer firmware:
= Cost of miss is one extra memory access
1 By the OS kernel:
= Cost of miss is two context switches

= Emmm—
Performance implications

m When TLB misses are handled by the firmware, they are
very cheap

0 ATLB hit rate of 99% is very good:
= Average access cost will be

0 7T,=0.99 T +0.01x2 T, =1.01T,

m Not true if TLB misses are handled by the kernel

= Emmm—
TLB coverage issues (l)

m TLBs have remained fairly small:
1 Sometimes just a few hundred entries
1 To remain fast

= Intel Skylake have two-level TLBs
1 L1 can hold 64 PTEs
1 L2can hold 1536 (128x12) PTEs

= Emmm—
TLB coverage issues (ll)

m Together they can hold 1600 PTEs

1 Will cover a bit less than 1.6Kx4KB, between 6 and 7MB of
main memory

m Processes with very large working sets can incur too many TLB
misses

0 Will affect system performance

= Emmm—
Linear page tables (I)

m PTs are too large to be stored in main memory
1 Store PT in virtual memory (VMS solution)
= Worked well for 32-bit architectures
1 Very large page tables need more than 2 levels
0 3 levels on MIPS R3000

= IS

Linear page tables (ll)

Virtual Memory

Other PTs

= Emmm—
Linear page tables (lil)

m Assuming a page size of 4KB,

1 Each page of virtual memory requires 4 bytes of physical
memory

1 Each PT maps 4GB of virtual addresses

0 APT will occupy 4MB

1 Storing these 4MB in virtual memory will require 4KB of
physical memory

= Emmmm—
Multi-level page tables (I)

m PT is divided into
1 A primary index that always remains in main memory

1 Secondary indexes or subindexes that can be expelled from
main memory

g

Multi-level page tables (ll)

< Page Number >

VIRTUAL ADDRESS 1ary 2ary Offset
' |
Primary inde
Y V1 Secondary
index h g
nchange
—P1 Frame (unchanged)
—p| Addr
v \/

PHYSICAL ADDRESS

Frame No Offset

= mmmm—
Multi-level page tables (llI)

m Especially suited for a page size of 4 KB and 32-bit virtual
addresses

= Will allocate
110 bits of the address for the first level (primary index),
110 bits for the second level (the secondary indexes, and
112 bits for the offset.

m Primary index and all secondary indexes will all have 219 entries
and will all occupy 4KB

g

ARM virtual address translation

TTBR

VIRTUAL ADDRESS

Page Directory

Addr

Frame

PHYSICAL ADDRESS

10bits | 10 bits | 12 bits
Page Table(s)
(unchanged)
Frame No | Offset

= Emmm—
Multi-level page tables (1V)

= What if we want larger address space?

m Linux uses three-level page tables
1 One Page Global Directory (PGD):
= Occupies one page frame
1 Multiple Page Middle Directories (PMD)
1 Multiple Page Tables

m Actual sizes are implementation-dependent

gl

Multi-level page tables (V)

64-bit address

index

Not used PGD PMD PT offset
Page Page Page Byte
Directory Directory Table offset
Pointer jhdex index
Table

"
x86 virtual address translation

32-bit address

2 bits 9 bits 9 bits 12 bits

PDPT Page Page Byte

index Directory Table offset
index index

PDPT is Page Directory Pointer Table
specifies one of four possible page directories

= Emmm——
The bad news

= More difficult to have 4KB pages and 4KB directories
1 With 64-bit addresses, can only put 512 PTEs per page

1 Could only address
29%29%29%212B = 23°B = 512 GB

gie

X064 virtual address translation

64-bit address

(level 3)

“Reserved” | 9 bits | 9 bits | 9 bits | 9 bits |12 bits
Page Page Page Page Byte
Map Directory Directory Table offset
Index Pointers Index Index
(level 4) Index (level 2) (level 1)

"
X064 virtual address translation

64-bit address

(level 3)

“Reserved” | 9 bits | 9 bits | 9 bits | 9 bits |12 bits
Page Page Page Page Byte
Map Directory Directory Table offset
Index Pointers |ndex Index
(level 4) Index (level 2) (level 1)

-
Hashed page tables (l)

= Only contain pages that are in main memory
1 PTs are much smaller
m Also known as inverted page tables

= Emmm—
Hashed page table (Il)

PN = page number
PFN = page frame number

=
Discussion

= We have
1 One page table per system
1 Much fewer PTEs than with regular page tables
1 "Whole PT can reside in main memory

= Hashed/inverted PTEs occupy three times more space than
regular PTEs

1 Must store process ID, page number, page frame number and
a pointer to next entry

=
Selecting the right page size

® Increasing the page size
1 Increases the length of the offset
1 Decreases the length of the page number
1 Reduces the size of page tables
= Fewer entries
1 Increases internal fragmentation

m 4KB seems to be a good choice

Page replacement policies

=
Their function

m Selecting which page to expel from main
memory when

1 Memory is full
1 Must bring in a new page

Old N
page Main ew page
gets out memory goes In

= Emmm—
Objectives

= A good page replacement policy should
1 Select the right page to expel (victim)
1 Have a reasonable run-time overhead

m First objective was more important when memory was extremely
expensive

m Second objective has been more important since the mid-eighties

=
Classification

m Four classes of page replacement policies
(1 Fixed-size local policies
1 Global policies
1 Variable-size local policies

1 Hybrid policies (part global and part local)

= Emmm—
Fixed-size local policies

m Assign to each process a fixed number of page frames

m Whenever a process has used all its page frames, it will have to
expel one of its own pages from main memory before bringing in a

new page

m Two policies:
0 Local FIFO
0 Local LRU

= Emmm—
Local FIFO

m EXxpels the page that has been in main memory for the longest
period of time

m Very easy to implement:
1 Can organize the pages frames into a queue
m Very poor policy:
1 Does not take into account how the page was used

=
Local LRU

m Expels the page that has not referenced for the longest period of
time
1 LRU stands for Least Recently Used

= Best fixed-size replacement policy

m Has an extremely high overhead:
1 Must keep track of all page accesses
1 Never used for VM

= Emmm—
Global policies

m Treat whole memory as a single pool of page frames

m \Whenever a page fault happens and memory is full, expel a page
from any process

1 Processes “steal” page frames from each other

= Many policies

-
Global FIFO and global LRU

m Global variants of local FIFO and local LRU
1 Same advantages and disadvantages

= Emmm—
MULTICS Clock policy (I)

= Organizes page frames in a circular list
m When a page fault occurs, policy looks at next frame in list

0 if PR bit = 0, the page is expelled and the page frame receives
the incoming page

0 if PR bit =1, the PR bit is reset and policy looks at next page in
list

= Emmmm——
MULTICS Clock policy (ll)

1 .
step 1:
reset PR bit
0
1 4 | step 2:

reset PR bit
i 0 step 3:

— 1 expel this page

=
Algorithm

Frame *clock(Frame *lastVictim) {

/You should not memorize
this algorithm, but should

Frame *hand;
int notFound = 1;
hand = lastVictim->next;
do {
if (hand->PR_Bit == 1) {
hand->PR_Bit = 0; hand
} else
notFound = @; // found!
} while notFound;
return hand;
} // clock

_try to understand it.

o

)

= hand->next;

= Emmm—
BSD Implementation (I)

m Designed for architectures lacking a PR bit
m Uses the valid bit to simulate the PR bit
1 Resets valid bit to zero instead of resetting PR bit to zero

0 When page is referenced again an interrupt occurs and the
kernel sets the valid bit back to one

= Requires two context switches

g

BSD Implementation (Il)

1

step 1:
mark page

1 |invalid

step 2:
1 | mark page
invalid

n step 3:

expel this page

= Emmm—
A first problem

= \WWhen memory is overused, hand of clock moves too fast to find

pages to be expelled
1 Too many resets
1 Too many context switches
= Berkeley UNIX limited CPU overhead of policy to 10% of CPU
time
1 No more than 300 page scans/second

=
Evolution of the policy

m Policy now runs with much more physical memory

® Hand now moves too slowly

m By the late 80's a two-hand policy was introduced:
1 First hand resets simulated PR bit

1 Second hand follows first at constant angle and expels all
pages whose PR bit=0

= EEESSS———
The two-hand policy

expels

resets
simulated
PR bit

=
FIFO with second chance (l)

m Used in the Mach 2.5 kernel

m Stores pages from all process in a single FIFO pool
1 The active queue

m Expelled pages go to the end of a single inactive queue where
they wait before being actually expelled from main memory

1 Can be rescued if they were expelled but still active
= FIFO can make bad decisions

= GBS
FIFO with second chance (ll)

Expelled pages Reclaimed pages

Disk

= Emmm—
FIFO with second chance(lV)

= Implementation dependent
1 Presence/absence of a page referenced bit

m Without a PR bit

1 Pages in the inactive queue are not mapped into any address
space

1 First access requires two context switches and returns the
page to the active queue

= SRS
Without a PR bit

Pages are reclaimed
at first access

Expelled pages are marked invalid Disk

=
FIFO with second chance(V)

= With a PR bit,

1 Pages sent to the inactive queue
= Remain valid
= Have their PR bit reset to zero

1 First access turns bit on

1 Page will return to the active queue when it would otherwise be
expelled

s No additional context switch overhead

= GBS
With a PR bit

Reclaim
all pages
with

PR bit =1

|

Expelled pages have PR bit reset to 0 1 Disk

= mmmm—
Variable-space local policies

m Working set policy let each process keep in main memory
all pages it had accessed duping its last T references

m Provided excellent performance
= Was never implemented due to its very high cost

m Influenced research efforts to design better page
replacementpolicies

1 No need to discuss them

=
Hybrid policies

= Window page replacement policy combines aspects of local and
global policies

m Solution adopted by
0 VMS in the late 70s
1 Windows ten years later
s Started with Windows NT
= Mainstream since Windows XP

=
Windows policy (I)

m Allocates to each process a private partition that it manages
using a FIFO policy.

m Pages expelled by the FIFO policy are put at the end of a large
global LRU queue from which they can be reclaimed

1 Predates by several years use of same solution by Mach

= IS
Windows policy (l)

Expelled pages T Reclaimed pages

- GloballRUqueve —

Disk

=
Major advantage

m Supports real-time applications
1 Most VM systems are poorly suited to real-time applications
= Unpredictable paging delays

1 Policy allows VMto allocate to a processenough page frames
to hold all its pages

= Process will never experience a page fault

= mmmm—
Major disadvantage

= Hard to decide how manyframes to allocate to each process

1 Allocating too many frames leaves not enough space for the
global LRU queue

= Page fault rate will become closer to that of a global FIFO
policy
1 Not allocating enough frames would cause too many reclaims
and too many context switches

=
Windows solution ()

m Each process is allocated a minimum and maximum working
set size

m Processes start with their minimum allocation of frames

= If the main memory is notfull, the VM manager allows processes
to grow up to their maximum allocation

= Emmm—
Windows solution (ll)

= As the main memory become full, the VM manager starts
trimming the working sets of processes

m Processes that exhibit a lot of paging can regain some of their lost
frames if enough frames remain available

Virtual Memory Tuning

= Emmm——
The problem

= With virtual memory

1 Most processes run without having all their pages in main
memory

1 Can have more processes in main memory

= Reduces CPU idle times
= Increases the system throughput

= How far can we go?

= Emmm——
Effect on throughput

>

Zone : Zone
1l

: Zone :

AT

System Throughput

>

Number of Processes in Memory
(Multiprogramming Level)

= aEmmmm——
Zone |

= Optimal Behavior:
1 Throughput increases with multiprogramming level
1 Little or no impact of page faults on system performance

=
Zone |l

= Unstable Behavior:
1 Page fault impact on throughput increases

1 Any surge of demand may move the system performance to
zone |l

Think of a freeway just below its saturation point:

Cars still move fast but any incident can
cause a slowdown

=
Zone |l

= Thrashing:

1 Active pages are constantly expelled from main memory to be
brought back again and again

1 Paging device becomes the bottleneck

Think of a freeway above its saturation point:
Cars barely move

= Emmm——
Preventing thrashing

® Have enough main memory
m Start suspending processes when paging rate starts increasing

= Old empirical rule:
1 Keep utilization of paging device below 60 percent

