
Chapter VIII

Virtual Memory

©Jehan-François Pâris

jfparis@uh.edu

Chapter overview

◼ Basics

 Address translation

 On-demand fetch

◼ Page table organization

◼ Page replacement policies

◼ Virtual memory tuning

Basics

Virtual memory

◼ Combines two big ideas

 Non-contiguous memory allocation:

processes are allocated page frames scattered all over the

main memory

 On-demand fetch:

Process pages are brought in main memory when they are

accessed for the first time

◼ MMU takes care of almost everything

Main memory

◼ Divided into fixed-size page frames

 Allocation units

 Sizes are powers of 2 (512B, 1KB, 2KB, 4KB)

 Properly aligned

 Numbered 0 , 1, 2, . . .

1 2 3 4 5 6 7

Process address space

◼ Divided into fixed-size pages

 Same sizes as page frames

 Properly aligned

 Also numbered 0,1, 2, . . .

0 1 2 3 4 5 6 7

The mapping

◼ Will allocate non-contiguous page frames to the pages of a

process

3 4 5 6 70 1 2

0 1 2

The mapping (I)

Page Number Frame number

0 0

1 4

2 2

The mapping (II)

Virtual Addresses Physical Addresses

0 to 1,023 0 to 1,023

1,024 to 2,047 4,096 to 5,119

2,048 to 3,071 2,048 to 3,071

◼ Assuming 1KB pages and page frames

The mapping (III)

Virtual Addresses Physical Addresses

000 0-0 to 000 1-1 000 0-0 to 0001-1

001 0-0 to 001 1-1 100 0-0 to 100 1-1

010 0-0 to 010 1-1 010 0-0 to 010 1-1

◼ Observing that 210 = 1000000000 in binary

◼ We will write 0-0 for ten zeroes and 1-1 for ten ones

The mapping (IV)

◼ The ten least significant bits of the address do not change

Virtual Addresses Physical Addresses

000 0-0 to 000 1-1 000 0-0 to 000 1-1

001 0-0 to 001 1-1 100 0-0 to 100 1-1

010 0-0 to 010 1-1 010 0-0 to 010 1-1

The mapping (V)

Page number Page frame number

000 000

001 100

010 010

◼ Must only map page numbers into page frame numers

The mapping (V)

◼ Same mapping, but in decimal

Page number Page frame number

0 0

1 4

2 2

The mapping (VI)

◼ Since page numbers are always in sequence, they are

redundant

Page number Page frame number

0 0

1 4

2 2

The algorithm

◼ Assume page size = 2p

◼ Chop p least significant bits from virtual address to obtain the

page number

◼ Use page number to find corresponding page frame number in

page table

◼ Append p least significant bits from virtual address to page frame

number to get physical address

Realization

PAGE

TABLE

Frame No Offset

Physical Address

(unchanged)

Virtual Address 2 897

Page No Offset

5 897

1

5
3

7

The offset

◼ Offset contains all bits that remain unchanged through the

address translation process

◼ Function of page size

Page size Offset

1 KB 10 bits

2 KB 11 bits

4KB 12 bits

The page number

◼ Contains other bits of virtual address

◼ With old 32-bit addresses

Page size Offset Page number

1KB 10 bits 22 bits

2KB 11 bits 21 bits

4KB 12 bits 20 bits

With the newer 64 bit addresses

◼ Current processor limitations allow for 48 address lines

 Can address248 bytes = 256 Terabytes

Page size Offset Page number

4KB 12 bits 36 bits

Windows x64 virtual addresses

◼ Restricted to 256 TB(48-bit addresses)

 Lower 128 TB are available as private address space for user

processes

 Upper 128 TB are system space

Maximum process address space is 247 bytes,

that is, 0.00076 percent of the theoretical limit

of 264 bytes.

Windows x86 virtual addresses

◼ 32 bit addresses allow us to access 4GB

◼ By default

 Lower 2 GB are available as private address space for user

processes

 Upper 2 GB are system space

◼ But

 Can give up to 3GB to user processes

 Complex extension mechanism allowing x86 systems to use

more than 4 GB of RAM

Internal fragmentation

◼ Each process now occupies an integer number of pages

◼ Actual process space is not a round number

 Last page of a process is rarely full

◼ On the average, half a page is wasted

 Not a big issue

 Internal fragmentation

On-demand fetch (I)

◼ Most processes terminate without having accessed their whole

address space

 Code handling rare error conditions, . . .

◼ Other processes go to multiple phases during which they access

different parts of their address space

 Compilers

On-demand fetch (II)

◼ VM systems do not fetch whole address space of a process when

it is brought into memory

◼ They fetch individual pages on demand when they get accessed

the first time

 Page miss or page fault

◼ When memory is full, they expel from memory pages that are not

currently in use

On-demand fetch (III)

◼ The pages of a process that are not in main memory reside on

disk

 In the executable file for the program being run for the pages

in the code segment

 In a special swap area for the data pages that were expelled

from main memory

On-demand fetch (IV)

Main memory Code Data

On-demand fetch (V)

◼ When a process tries to access data that are nor present in main

memory

 MMU hardware detects that the page is missing and causes

an interrupt

 Interrupt wakes up page fault handler

 Page fault handler puts process in blocked state and brings

missing page in main memory

The swap area

◼ On disk or SSD

◼ Where the VM stores expelled data pages that contain data that

must be saved

 Contain data created/modified by the process

 Said to be dirty

◼ No code segment pages

 Always write-protected

 Sharedwith other processes executing the same programmer

Advantages

◼ VM systems use main memory more efficiently than other memory

management schemes

 Give to each process more or less what it needs

◼ Process sizes are not limited by the size of main memory

 Greatly simplifies program organization

Sole disadvantage

◼ Bringing pages from disk is a relatively slow operation

 Takes milliseconds while memory accesses take nanoseconds

◼ Ten thousand times to hundred thousand times slower

The cost of a page fault

◼ Let

 Tm be the main memory access time

 Td the disk access time

 fthe page fault rate

 Ta the average access time of the VM

◼ We have

 Ta = (1 – f)Tm + f (Tm+Td) = Tm + fTd

Example

f Ta

10-3 = 70ns + 7ms/103 = 7,070ns

10-4 = 70ns + 7ms/104 = 770ns

10-5 = 70ns + 7ms/105 = 140ns

10-6 = 70ns + 7ms/106 = 77ns

◼ AssumeTm = 70 ns and Td= 7 ms

Replacing the disk by an SSD

𝒇 𝑻𝒂

10-3 = 70ns + 70μs/103 = 140ns

10-4 = 70ns + 70μs/104 = 77ns

10-5 = 70ns + 70μs/105 = 70.7ns

10-6 = 70ns + 70μs/106 = 70.07ns

◼ AssumeTm = 70 ns and TSSD = 70 μs

Locality principle (I)

◼ A process that would access its pages in a totally unpredictable

fashion would perform very poorly in a VM system unless all its

pages are in main memory

Locality principle (II)

◼ Process P accesses randomly a very large array

 n pages

◼ If m of these n pages are in main memory,

the page fault frequency of the process will be (n– m)/n

◼ Must switch to another algorithm

Locality principle (III)

◼ Fortunately for us most programs obey the locality principle

 They access at any time a small fraction of their address space

◼ Spatial locality

 They tend to reference again the pages they have recently

referenced

◼ Temporal locality

Tuning considerations

◼ In order to achieve an acceptable performance,

a VM system must ensure that each process has in main memory

all the pages it is currently referencing

◼ When this is not the case, the system performance will quickly

collapse

Page Table Representations

Page table entries

◼ A page table entry (PTE) contains

 A page frame number

 Several special bits

◼ Assuming 64-bit addresses, all fit into eight bytes

Page frame number Bits

The special bits (I)

◼ Present bit/Valid bit :

 1 if page is in main memory,

 0 otherwise

◼ Missing bit:

 1 if page is in not main memory,

 0 otherwise

The special bits (II)

◼ Dirty bit:

 1 if page has been modified since it was brought into main

memory,

 0 otherwise

◼ A dirty page must be saved in the process swap area on disk

before being expelled from main memory

◼ A clean page can be immediately expelled

The special bits (III)

◼ Page-referenced bit:

 1 if page has been recently accessed,

 0 otherwise

◼ Not present on manycomputers

 Can be simulated in software

Where to store page tables

◼ Use a three-level approach

◼ Store parts of page table

 In high speed registers located in the MMU:

the translation lookaside buffer (TLB)

(good solution)

 In main memory (bad solution)

 On disk (ugly solution)

The translation look aside buffer

◼ Small high-speed memory

 Contains fixed number of PTEs

 Content-addressable memory

◼ Entries include page frame number and page number

Page frame number BitsPage number

TLB misses

◼ When a PTE cannot be found in the TLB,

a TLB miss is said to occur

◼ TLB misses can be handled

 By the computer firmware:

◼ Cost of miss is one extra memory access

 By the OS kernel:

◼ Cost of miss is two context switches

Performance implications

◼ When TLB misses are handled by the firmware, they are

very cheap

 A TLB hit rate of 99% is very good:

◼ Average access cost will be

 Ta =0.99 Tm+ 0.01×2 Tm = 1.01 Tm

◼ Not true if TLB misses are handled by the kernel

TLB coverage issues (I)

◼ TLBs have remained fairly small:

 Sometimes just a few hundred entries

 To remain fast

◼ Intel Skylake have two-level TLBs

 L1 can hold 64 PTEs

 L2can hold 1536 (128×12) PTEs

TLB coverage issues (II)

◼ Together they can hold 1600 PTEs

 Will cover a bit less than 1.6K×4KB, between 6 and 7MB of

main memory

◼ Processes with very large working sets can incur too many TLB

misses

 Will affect system performance

Linear page tables (I)

◼ PTs are too large to be stored in main memory

 Store PT in virtual memory (VMS solution)

◼ Worked well for 32-bit architectures

 Very large page tables need more than 2 levels

 3 levels on MIPS R3000

Linear page tables (II)

Physical

Memory
Virtual Memory

One PT

Other PTs

Linear page tables (III)

◼ Assuming a page size of 4KB,

 Each page of virtual memory requires 4 bytes of physical

memory

 Each PT maps 4GB of virtual addresses

 A PT will occupy 4MB

 Storing these 4MB in virtual memory will require 4KB of

physical memory

Multi-level page tables (I)

◼ PT is divided into

 A primary index that always remains in main memory

 Secondary indexes or subindexes that can be expelled from

main memory

Multi-level page tables (II)

PHYSICAL ADDRESS Offset

Secondary

index

VIRTUAL ADDRESS

Addr

Primary index

Offset1ary 2ary

< Page Number >

Frame No

Frame
(unchanged)

Multi-level page tables (III)

◼ Especially suited for a page size of 4 KB and 32-bit virtual

addresses

◼ Will allocate

 10 bits of the address for the first level (primary index),

 10 bits for the second level (the secondary indexes, and

 12 bits for the offset.

◼ Primary index and all secondary indexes will all have 210 entries

and will all occupy 4KB

ARM virtual address translation

PHYSICAL ADDRESS

TTBR

VIRTUAL ADDRESS

Addr

10bits 10 bits 12 bits

Page Directory

Offset

Page Table(s)

Frame No

(unchanged)

Frame

Multi-level page tables (IV)

◼ What if we want larger address space?

◼ Linux uses three-level page tables

 One Page Global Directory (PGD):

◼ Occupies one page frame

 Multiple Page Middle Directories (PMD)

 Multiple Page Tables

◼ Actual sizes are implementation-dependent

Multi-level page tables (V)

64-bit address

Not used PGD PMD PT offset

Page

Directory

Pointer

Table

index

Page

Directory

index

Byte

offset

Page

Table

index

x86 virtual address translation

32-bit address

2 bits 9 bits 9 bits 12 bits

PDPT

index

Page

Directory

index

Byte

offset

Page

Table

index

PDPT is Page Directory Pointer Table

specifies one of four possible page directories

The bad news

◼ More difficult to have 4KB pages and 4KB directories

 With 64-bit addresses, can only put 512 PTEs per page

 Could only address

29×29×29×212B = 239B = 512 GB

X64 virtual address translation

64-bit address

Page

Map

Index

(level 4)

Page

Directory

Pointers

Index

(level 3)

Byte

offset

Page

Table

Index

(level 1)

“Reserved” 9 bits 9 bits 9 bits 12 bits9 bits

Page

Directory

Index

(level 2)

X64 virtual address translation

64-bit address

Page

Map

Index

(level 4)

Page

Directory

Pointers

Index

(level 3)

Byte

offset

Page

Table

Index

(level 1)

“Reserved” 9 bits 9 bits 9 bits 12 bits9 bits

Page

Directory

Index

(level 2)

Hashed page tables (I)

◼ Only contain pages that are in main memory

 PTs are much smaller

◼ Also known as inverted page tables

Hashed page table (II)

PN = page number

PFN = page frame number

PN
hash

PN

PFN

Discussion

◼ We have

 One page table per system

 Much fewer PTEs than with regular page tables

 `Whole PT can reside in main memory

◼ Hashed/inverted PTEs occupy three times more space than

regular PTEs

 Must store process ID, page number, page frame number and

a pointer to next entry

Selecting the right page size

◼ Increasing the page size

 Increases the length of the offset

 Decreases the length of the page number

 Reduces the size of page tables

◼ Fewer entries

 Increases internal fragmentation

◼ 4KB seems to be a good choice

Page replacement policies

Their function

◼ Selecting which page to expel from main

memory when

 Memory is full

 Must bring in a new page

New page

goes in

Main

memory

Old page

gets out

Objectives

◼ A good page replacement policy should

 Select the right page to expel (victim)

 Have a reasonable run-time overhead

◼ First objective was more important when memory was extremely

expensive

◼ Second objective has been more important since the mid-eighties

Classification

◼ Four classes of page replacement policies

 Fixed-size local policies

 Global policies

 Variable-size local policies

 Hybrid policies (part global and part local)

Fixed-size local policies

◼ Assign to each process a fixed number of page frames

◼ Whenever a process has used all its page frames, it will have to

expel one of its own pages from main memory before bringing in a

new page

◼ Two policies:

 Local FIFO

 Local LRU

Local FIFO

◼ Expels the page that has been in main memory for the longest
period of time

◼ Very easy to implement:

 Can organize the pages frames into a queue

◼ Very poor policy:

 Does not take into account how the page was used

Local LRU

◼ Expels the page that has not referenced for the longest period of

time

 LRU stands for Least Recently Used

◼ Best fixed-size replacement policy

◼ Has an extremely high overhead:

 Must keep track of all page accesses

 Never used for VM

Global policies

◼ Treat whole memory as a single pool of page frames

◼ Whenever a page fault happens and memory is full, expel a page

from any process

 Processes “steal” page frames from each other

◼ Many policies

Global FIFO and global LRU

◼ Global variants of local FIFO and local LRU

 Same advantages and disadvantages

MULTICS Clock policy (I)

◼ Organizes page frames in a circular list

◼ When a page fault occurs, policy looks at next frame in list

 if PR bit = 0, the page is expelled and the page frame receives

the incoming page

 if PR bit = 1, the PR bit is reset and policy looks at next page in

list

MULTICS Clock policy (II)

step 1:
reset PR bit

1

1

0

1

0

0

1

1

step 2:
reset PR bit

step 3:

expel this page

Algorithm

Frame *clock(Frame *lastVictim) {
Frame *hand;
int notFound = 1;
hand = lastVictim->next;
do {

if (hand->PR_Bit == 1) {
hand->PR_Bit = 0; hand = hand->next;

} else
notFound = 0; // found!

} while notFound;
return hand;

} // clock

You should not memorize

this algorithm, but should

try to understand it.

BSD Implementation (I)

◼ Designed for architectures lacking a PR bit

◼ Uses the valid bit to simulate the PR bit

 Resets valid bit to zero instead of resetting PR bit to zero

 When page is referenced again an interrupt occurs and the

kernel sets the valid bit back to one

◼ Requires two context switches

BSD Implementation (II)

step 1:
mark page
invalid

step 2:
mark page
invalid

step 3:

expel this page

1

1

0

1

0

0

1

1

A first problem

◼ When memory is overused, hand of clock moves too fast to find

pages to be expelled

 Too many resets

 Too many context switches

◼ Berkeley UNIX limited CPU overhead of policy to 10% of CPU

time

 No more than 300 page scans/second

Evolution of the policy

◼ Policy now runs with much more physical memory

◼ Hand now moves too slowly

◼ By the late 80’s a two-hand policy was introduced:

 First hand resets simulated PR bit

 Second hand follows first at constant angle and expels all
pages whose PR bit = 0

resets

simulated

PR bit

expels

a

The two-hand policy

FIFO with second chance (I)

◼ Used in the Mach 2.5 kernel

◼ Stores pages from all process in a single FIFO pool

 The active queue

◼ Expelled pages go to the end of a single inactive queue where

they wait before being actually expelled from main memory

 Can be rescued if they were expelled but still active

◼ FIFO can make bad decisions

FIFO with second chance (II)

Inactive Queue

Expelled pages Reclaimed pages

Disk

Global pool of page frames

FIFO

(Active Queue)

FIFO with second chance(IV)

◼ Implementation dependent

 Presence/absence of a page referenced bit

◼ Without a PR bit

 Pages in the inactive queue are not mapped into any address

space

 First access requires two context switches and returns the

page to the active queue

Without a PR bit

Global pool of page frames

FIFO

(Active Queue)

Inactive Queue

DiskExpelled pages are marked invalid

Pages are reclaimed

at first access

FIFO with second chance(V)

◼ With a PR bit,

 Pages sent to the inactive queue

◼ Remain valid

◼ Have their PR bit reset to zero

 First access turns bit on

 Page will return to the active queue when it would otherwise be
expelled

◼ No additional context switch overhead

With a PR bit

Inactive Queue

Global pool of page frames

FIFO

(Active Queue)

Expelled pages have PR bit reset to 0

Reclaim

all pages

with

PR bit = 1

Disk

Variable-space local policies

◼ Working set policy let each process keep in main memory

all pages it had accessed duping its last T references

◼ Provided excellent performance

◼ Was never implemented due to its very high cost

◼ Influenced research efforts to design better page

replacementpolicies

 No need to discuss them

Hybrid policies

◼ Window page replacement policy combines aspects of local and

global policies

◼ Solution adopted by

 VMS in the late 70s

 Windows ten years later

◼ Started with Windows NT

◼ Mainstream since Windows XP

Windows policy (I)

◼ Allocates to each process a private partition that it manages

using a FIFO policy.

◼ Pages expelled by the FIFO policy are put at the end of a large

global LRU queue from which they can be reclaimed

 Predates by several years use of same solution by Mach

Windows policy (II)

Process P0

resident set

of pages

GlobalLRU queue

Process P1

resident set

of pages

Process P2

resident set

of pages

Expelled pages

Disk

Reclaimed pages

Major advantage

◼ Supports real-time applications

 Most VM systems are poorly suited to real-time applications

◼ Unpredictable paging delays

 Policy allows VMto allocate to a processenough page frames

to hold all its pages

◼ Process will never experience a page fault

Major disadvantage

◼ Hard to decide how manyframes to allocate to each process

 Allocating too many frames leaves not enough space for the

global LRU queue

◼ Page fault rate will become closer to that of a global FIFO

policy

 Not allocating enough frames would cause too many reclaims

and too many context switches

Windows solution (I)

◼ Each process is allocated a minimum and maximum working

set size

◼ Processes start with their minimum allocation of frames

◼ If the main memory is notfull, the VM manager allows processes

to grow up to their maximum allocation

Windows solution (II)

◼ As the main memory become full, the VM manager starts

trimming the working sets of processes

◼ Processes that exhibit a lot of paging can regain some of their lost

frames if enough frames remain available

Virtual Memory Tuning

The problem

◼ With virtual memory

 Most processes run without having all their pages in main

memory

 Can have more processes in main memory

◼ Reduces CPU idle times

◼ Increases the system throughput

◼ How far can we go?

Effect on throughput

S
ys

te
m

 T
h

ro
u

g
h

p
u

t

Number of Processes in Memory

(Multiprogramming Level)

Zone

I
Zone

II

Zone

III

Zone I

◼ Optimal Behavior:

 Throughput increases with multiprogramming level

 Little or no impact of page faults on system performance

Zone II

◼ Unstable Behavior:

 Page fault impact on throughput increases

 Any surge of demand may move the system performance to

zone III

Think of a freeway just below its saturation point:

Cars still move fast but any incident can
cause a slowdown

Zone III

◼ Thrashing:

 Active pages are constantly expelled from main memory to be

brought back again and again

 Paging device becomes the bottleneck

Think of a freeway above its saturation point:

Cars barely move

Preventing thrashing

◼ Have enough main memory

◼ Start suspending processes when paging rate starts increasing

◼ Old empirical rule:

 Keep utilization of paging device below 60 percent

