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Basics



Virtual memory

 Combines two big ideas
Non-contiguous memory allocation:

processes are allocated page frames scattered all over the 
main memory

On-demand fetch:
Process pages are brought in main memory when they are 
accessed for the first time

 MMU takes care of almost everything



Main memory

 Divided into fixed-size page frames
Allocation units 
Sizes are powers of 2   (512B, 1KB, 2KB, 4KB)
Properly aligned
Numbered  0 , 1,  2, . . .

0 1 2 3 4 5 6 7 8



Process address space

 Divided into fixed-size pages
Same sizes as page frames
Properly aligned
Also numbered 0 , 1,  2, . . .

0 1 2 3 4 5 6 7



The mapping

 Will allocate non-contiguous page frames to the pages of a 
process

0 1 2

3 4 5 6 70 1 2



The mapping

Page Number Frame number

0 0
1 4
2 2



The mapping

Virtual Addresses Physical Addresses

0 to 1,023 0 to 1,023
1,024 to 2,047 4,096 to 5,119
2,048 to 3,071 2,048 to 3,071

 Assuming 1KB pages and page frames



The mapping

Virtual Addresses Physical Addresses

000 0-0 to 000 1-1 000 0-0 to 0001-1
001 0-0 to 001 1-1 100 0-0 to 100 1-1
010 0-0 to 010 1-1 010 0-0 to 010 1-1

 Observing that  210 = 1000000000 in binary
 We will write 0-0 for ten zeroes and 1-1 for ten ones



The mapping

 The ten least significant bits of the address do not change

Virtual Addresses Physical Addresses

000 0-0 to 000 1-1 000 0-0 to 000 1-1
001 0-0 to 001 1-1 100 0-0 to 100 1-1
010 0-0 to 010 1-1 010 0-0 to 010 1-1



The mapping

Page number Page frame  number

000 000 
001 100 
010 010 

 Must only map page numbers into page frame numers



The mapping

 Same mapping  in decimal

Page number Page frame number

0 0
1 4 
2 2 



The mapping

 Since page numbers are always in sequence, they are 
redundant 

Page number Page frame number
0 0
1 4 
2 2 



The algorithm

 Assume page size = 2p

 Chop p least significant bits from virtual address to obtain the 
page number

 Use page number to find corresponding page frame number in 
page table

 Append p least significant bits from virtual address to page frame 
number to get physical address



Realization

Physical Address

(unchanged)

Virtual Address 2 897
Page No Offset

5 897
Frame No Offset

PAGE
TABLE

1

5
3

7



The offset

 Offset contains all bits that remain unchanged through the 
address translation process

 Function of page size

Page size Offset 
1 KB 10 bits
2 KB 11 bits 
4KB 12 bits 



The page number

 Contains other bits of virtual address
 With old 32-bit addresses

Page size Offset Page number
1KB 10 bits 22 bits
2KB 11 bits 21 bits 
4KB 12 bits 20 bits 



With the newer 64 bit addresses

 Current processor limitations allow for 48 address lines
Can address  248 bytes = 256 Terabytes 

Page size Offset Page number
4KB 12 bits 36 bits 



Windows x64 virtual addresses
 Restricted to 256 TB (48-bit addresses)

Lower 128 TB are available as private address space for user 
processes

Upper 128 TB are system space

Maximum process address space is 247 bytes, 
that is, 0.00076 percent of the theoretical
limit of 264 bytes.



Windows x86 virtual addresses
 32 bit addresses allow us to access 4GB
 By default
Lower 2 GB are available as private address space for user 

processes
Upper 2 GB are system space

 But
Can give up to 3GB to user processes
Complex extension mechanism allowing x86 systems to use 

more than 4 GB of RAM



Internal fragmentation

 Each process now occupies an integer number of pages
 Actual process space is not a round number
 Last page of a process is rarely full

 On the average, half a page is wasted
Not a big issue
 Internal fragmentation



On-demand fetch (I)

 Most processes terminate without having accessed their whole 
address space
Code handling rare error conditions, . . . 

 Other processes go to multiple phases during which they access 
different parts of their address space
Compilers



On-demand fetch (II)

 VM systems do not fetch whole address space of a process when 
it is brought into memory

 They fetch individual pages on demand when they get accessed 
the first time
Page miss or page fault

 When memory is full, they expel from memory pages that are not 
currently in use



On-demand fetch (III)

 The pages of a process that are not in main memory reside on 
disk
 In the executable file for the program being run for the pages 

in the code segment
 In a special swap area for the data pages that were expelled 

from main memory



On-demand fetch (IV)

Main memory            Code Data



On-demand fetch (V)

 When a process tries to access data that are nor present in main 
memory

MMU hardware detects that the page is missing and causes 
an interrupt

 Interrupt wakes up page fault handler

Page fault handler puts process in blocked state and brings 
missing page in main memory



Advantages

 VM systems use main memory more efficiently than other memory 
management schemes
Give to each process more or less what it needs

 Process sizes are not limited by the size of main memory
Greatly simplifies program organization



Sole disadvantage

 Bringing pages from disk is a relatively slow operation
Takes milliseconds while memory accesses take nanoseconds

Ten thousand times to hundred thousand times slower



The cost of a page fault

 Let
Tm be the main memory access time
Td the disk access time
f the page fault rate
Ta the average access time of the VM

 We have
Ta = (1 – f )Tm + f (Tm+Td) = Tm + fTd

 



Example

f Ta
10-3 = 70ns + 7ms/103 = 7,070ns

10-4 = 70ns + 7ms/104 = 770ns

10-5 = 70ns + 7ms/105 = 140ns

10-6 = 70ns + 7ms/106 = 77ns

 Assume  Tm = 70 ns and Td = 7 ms



Replacing the disk by an SSD

𝒂

10-3 = 70ns + 70μs/103 = 140ns

10-4 = 70ns + 70μs/104 = 77ns

10-5 = 70ns + 70μs/105 = 70.7ns

10-6 = 70ns + 70μs/106 = 70.07ns

 Assume  Tm = 70 ns and TSSD = 70 μs



Conclusion

 Virtual memory works best when page fault rate is less than a 
page fault per 100,000 instructions 

Because page faults are very costly



Locality principle (I)

 A process that would access its pages in a totally unpredictable 
fashion would perform very poorly in a VM system unless all its 
pages are in main memory



Locality principle (II)

 Process P accesses randomly a very large array 
n pages

 If m of these n pages are in main memory, 
the page fault frequency of the process will be (n– m)/n

 Must switch to another algorithm



Locality principle (III)

 Fortunately for us most programs obey the locality principle

They access at any time a small fraction of their address space
Spatial locality

They tend to reference again the pages they have recently 
referenced
Temporal locality



Tuning considerations

 In order to achieve an acceptable performance,
a VM system must ensure that each process has in main memory 
all the pages it is currently referencing

 When this is not the case, the system performance will quickly 
collapse



Page Table Representations



Page table entries 

 A page table entry (PTE) contains
A page frame number
 Several special bits

 Assuming 64-bit addresses, all fit into eight bytes

Page frame number Bits



The special bits (I)

 Present bit/Valid bit :
1 if page is in main memory, 
0 otherwise

 Missing bit:
1 if page is in not main memory, 
0 otherwise



The special bits (II)

 Dirty bit:
1 if page has been modified since it was brought into main 

memory,
0 otherwise

 A dirty page must be saved in the process swap area on disk 
before being expelled from main memory

 A clean page can be immediately expelled



The special bits (III)

 Page-referenced bit:
1 if page has been recently accessed,
0 otherwise

 Not present on many computers
Can be simulated in software



Where to store page tables

 Use a three-level approach
 Store parts of page table
 In high speed registers located in the MMU:

the translation lookaside buffer (TLB)
(good solution)

 In main memory (bad solution)
On disk (ugly solution)



The translation look aside buffer

 Small high-speed memory
Contains fixed number of PTEs
 Content-addressable memory

Entries include page frame number and page number

Page frame number BitsPage number



TLB misses

 When a PTE cannot be found in the TLB, 
a TLB miss is said to occur

 TLB misses can be handled
By the computer firmware:

Cost of miss is one extra memory access
By the OS kernel:

Cost of miss is two context switches



Performance implications

 When TLB misses are handled by the firmware, they are
very cheap
A TLB hit rate of 99% is very good:

Average access cost will be
Ta =  0.99 Tm + 0.01 2 Tm = 1.01 Tm

 Not true if TLB misses are handled by the kernel 



TLB coverage issues (I)

 TLBs have remained fairly small:
Sometimes just a few hundred entries
To remain fast

 Intel Skylake have two-level TLBs
L1 can hold 64 PTEs
L2 can hold 1536 (128×12) PTEs



TLB coverage issues (II)

 Together they can hold 1600 PTEs
Will cover a bit less than 1.6K×4KB, between 6 and 7MB of 

main memory

 Processes with very large working sets can incur too many TLB
misses
Will affect system performance



Linear page tables (I)

 PTs are too large to be stored in main memory
Store PT in virtual memory (VMS solution)

Worked well for 32-bit architectures
Very large page tables need more than 2 levels

3 levels on MIPS R3000



Linear page tables (II)

Physical
Memory

Virtual Memory

PT
Other PTs



Linear page tables (III)

 Assuming a page size of 4KB,
Each page of virtual memory requires 4 bytes of physical 

memory
Each PT maps 4GB of virtual addresses
A PT will occupy 4MB
Storing these 4MB in virtual memory will require 4KB of 

physical memory



Multi-level page tables (I)

 PT is divided into 
A primary index that always remains in main memory
Secondary indexes or subindexes that can be expelled from 

main memory



Multi-level page tables (II)

VIRTUAL ADDRESS

PHYSICAL ADDRESS

Addr

Primary index

Offset

Offset

1ary 2ary

Secondary
index

< Page Number >

Frame No

Frame (unchanged)



Multi-level page tables (III)

 Especially suited for a page size of 4 KB and 32-bit virtual 
addresses

 Will allocate
10 bits of the address for the first level (primary index),
10 bits for the second level (the secondary indexes, and
12 bits for the offset.

 Primary index and all secondary indexes will all have 210 entries 
and will all occupy 4KB



ARM virtual address translation

VIRTUAL ADDRESS

PHYSICAL ADDRESS

Addr

10  bits  10 bits   12 bits

Page Directory

Offset

Page Table(s)

Frame No

(unchanged)

TTBR

Frame



Multi-level page tables (IV)

 What if we want larger address space?

 Linux uses three-level page tables
 One Page Global Directory (PGD):

Occupies one page frame
Multiple Page Middle Directories (PMD)
Multiple Page Tables

 Actual sizes are implementation dependant



Multi-level page tables (V)

64-bit address

Not used PGD PMD PT offset

Page
Directory
Pointer
Table
index

Page
Directory

index

Byte
offset

Page
Table
index



x86 virtual address translation

32-bit address

2 bits 9 bits 9 bits 12 bits

PDPT
index

Page
Directory

index

Byte
offset

Page 
Table
index

PDPT is Page Directory Pointer Table
specifies one of four possible page directories



The bad news

 More difficult to have 4KB pages and 4KB directories
With 64-bit addresses, can only put 512 PTEs per page

Could only address

29×29×29×212B = 239B = 512 GB



X64 virtual address translation

64-bit address

Page
Map

Index
(level 4)

Page
Directory
Pointers

Index
(level 3)

Byte
offset

Page
Table
Index

(level 1)

“Reserved” 9 bits 9 bits 9 bits 12 bits9 bits

Page
Directory

Index
(level 2)



X64 virtual address translation

64-bit address

Page
Map

Index
(level 4)

Page
Directory
Pointers

Index
(level 3)

Byte
offset

Page
Table
Index

(level 1)

“Reserved” 9 bits 9 bits 9 bits 12 bits9 bits

Page
Directory

Index
(level 2)



Hashed page tables (I)

 Only contain pages that are in main memory
PTs are much smaller

 Also known as inverted page tables



Hashed page table (II)

PN hash
PN

PFN

PN = page number
PFN = page frame number



Discussion 

 We have much fewer PTEs than with regular page tables
Whole PT can reside in main memory

 Hashed/inverted PTEs occupy three times more space than 
regular PTEs
Must store page number, page frame number and a pointer to 

next entry



Selecting the right page size

 Increasing the page size
 Increases the length of the offset
Decreases the length of the page number
Reduces the size of page tables

Fewer entries
 Increases internal fragmentation

 4KB seems to be a good choice 



Page replacement policies



Their function

 Selecting which page to expel from main 
memory when
Memory is full 
Must bring in a new page

New page

goes in
Main

memory

Old page

gets out



Objectives

 A good page replacement policy should
Select the right page to expel ( victim )
Have a reasonable run-time overhead

 First objective was more important when memory was extremely 
expensive

 Second objective has been more important since the mid-eighties 



Classification

 Four classes of page replacement policies

Fixed-size local policies

Global policies

Variable-size local policies

Hybrid policies (part global and part local)



Fixed-size local policies

 Assign to each process a fixed number of page frames

 Whenever a process has used all its page frames, it will have to 
expel one of its own pages from main memory before bringing in a 
new page 

 Two policies:
Local FIFO 
Local LRU



Local FIFO

 Expels the page that has been in main memory for the longest 
period of time

 Very easy to implement:
Can organize the pages frames into a queue

 Very poor policy:
Does not take into account how the page was used 



Local LRU

 Expels the page that has not referenced for the longest period of 
time
 LRU stands for Least Recently Used

 Best fixed-size replacement policy

 Has an extremely high overhead:
Must keep track of all page accesses
 Never used for VM



Global policies

 Treat whole memory as a single pool of page frames

 Whenever a page fault happens and memory is full, expel a page 
from any process
Processes “steal” page frames from each other 

 Many policies



Global FIFO and global LRU

 Global variants of local FIFO and local LRU
Same advantages and disadvantages



MULTICS Clock policy (I)

 Organizes page frames in a circular list
 When a page fault occurs, policy looks at next frame in list
 if PR bit = 0, the page is expelled and the page frame receives 

the incoming page
 if PR bit = 1, the PR bit is reset and policy looks at next page in 

list



MULTICS Clock policy

step 1:
reset PR bit

1

1

0
1

0

0

1

1

step 2:
reset PR bit 

step 3:
expel this page



Algorithm

Frame *clock(Frame *lastVictim) { 
Frame *hand;
int notFound = 1;
hand = lastVictim‐>next;
do {

if (hand‐>PR_Bit == 1) {
hand‐>PR_Bit = 0; hand = hand‐>next;

} else 
notFound = 0; // found!

} while notFound;
return hand;

} // clock

You should not memorize
this algorithm, but should 
try to understand it.



BSD Implementation (I)

 Designed for architectures lacking a PR bit
 Uses the valid bit to simulate the PR bit
Resets valid bit to zero instead of resetting PR bit to zero
When page is referenced again an interrupt occurs and the 

kernel sets the valid bit back to one
Requires two context switches



BSD Implementation (II)

step 1:
mark page 
invalid

step 2:
mark page 
invalid

step 3:
expel this page

1

1

0
1

0

0

1

1



A first problem

 When memory is overused, hand of clock moves too fast to find 
pages to be expelled
Too many resets
Too many context switches

 Berkeley UNIX limited CPU overhead of policy to 10% of CPU 
time
No more than 300 page scans/second



Evolution of the policy

 Policy now runs with much more physical memory
 Hand now moves too slowly
 By the late 80’s a two-hand policy was introduced:
First hand resets simulated PR bit
Second hand follows first at constant angle and expels all 

pages whose PR bit = 0



resets
simulated
PR bit

expels



The two-hand policy



FIFO with second chance (I)
 Used in the Mach 2.5 kernel

 Stores pages from all process in a single FIFO pool 
The active queue

 Expelled pages go to the end of a single inactive queue where 
they wait  before being actually expelled from main memory

Can be rescued if they were expelled but still active
FIFO can make bad decisions



FIFO with second chance (II)

Inactive Queue

Expelled pages Reclaimed pages

Disk

Global pool of page frames
FIFO

(Active Queue)



FIFO with second chance  (IV)

 Implementation dependent
Presence/absence of a page referenced bit

 Without a PR bit
Pages in the inactive queue are not mapped into any address 

space
First access requires two context switches and returns the 

page to the active queue 



Without a PR bit

Global pool of page frames
FIFO

(Active Queue)

Inactive Queue

DiskExpelled pages are marked invalid

Pages are reclaimed
at first access



FIFO with second chance  (V)

 With a PR bit,
Pages sent to the inactive queue

Remain valid
Have their PR bit reset to zero

First access turns bit on
Page will return to the active queue when it would otherwise be 

expelled
No additional context switch overhead



With a PR bit

Inactive Queue

Global pool of page frames
FIFO

(Active Queue)

Expelled pages have PR bit reset to 0

Reclaim
all pages 
with
PR bit = 1

Disk



Variable-space local policies

 Working set policy let each process keep  into main memory all 
pages it had accessed duping its last T references

 Provided excellent performance

 Was never implemented due to its very high cost

 Influenced research efforts to design better page replacement  
policies

No need to discuss them



Hybrid policies

 Window page replacement policy combines aspects of local and 
global policies

 Solution adopted by
VMS in the late 70s
Windows ten years later

Started with Windows NT
Mainstream since Windows XP



Windows policy (I)

 Allocates to each process a private partition that it manages 
using a FIFO policy.

 Pages expelled by the FIFO policy are put at the end of a large 
global LRU queue from which they can be reclaimed
Predates by several years use of same solution by Mach



Windows policy (II)

Process P0
resident set

of pages

Global  LRU queue

Process P1
resident set

of pages

Process P2
resident set

of pages

Expelled pages

Disk

Reclaimed pages



Major advantage

 Supports real-time applications
Most VM systems are poorly suited to real-time applications

Unpredictable paging delays
Policy allows VM  to allocate to a process  enough page frames 

to hold all its pages
Process will never experience a page fault



Major disadvantage

 Hard to decide how many  frames to allocate to each process
Allocating too many frames leaves not enough space for the 

global LRU queue
Page fault rate will become closer to that of a global FIFO 

policy
Not allocating enough frames would cause too many reclaims 

and too many context switches



Windows solution (I)

 Each process is allocated a minimum and maximum working 
set size

 Processes start with their minimum allocation of frames 
 If the main memory is not  full, the VM manager allows processes 

to grow up to their maximum allocation 



Windows solution (II)

 As the main memory become full, the VM manager starts 
trimming the working sets of processes

 Processes that exhibit a lot of paging can regain some of their lost 
frames if enough frames remain available 



Virtual Memory Tuning



The problem

 With virtual memory
Most processes run without having all their pages in main 

memory
Can have more processes in main memory

Reduces CPU idle times
 Increases the system throughput 

 How far can we go? 



Effect on throughput
System Throughput

Number of Processes in Memory
(Multiprogramming Level)

Zone
I

Zone 
II

Zone
III



Zone I

 Optimal Behavior:
Throughput increases with multiprogramming level
Little or no impact of page faults on system performance



Zone II

 Unstable Behavior:
Page fault impact on throughput increases
Any surge of demand may move the system performance to 

zone III

Think of a freeway  just below its saturation point:
Cars still move fast but any incident can
cause a slowdown



Zone III

 Thrashing:
Active pages are constantly expelled from main memory to be 

brought back again and again
Paging device becomes the bottleneck

Think of a freeway above its saturation point:
Cars barely move



Preventing thrashing

 Have enough main memory

 Start suspending processes when paging rate starts increasing

 Old empirical rule:
Keep utilization of paging disk below 60 percent


