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General Organization



The file system

 Provides long term storage of information. 
 Will store data in stable storage (disk)
 Cannot be RAM because:
 Dynamic RAM loses its contents when powered off
 Static RAM is too expensive
 System crashes can corrupt contents of the main memory



A file system



File and file names

 Data managed by the file system are grouped in user-defined
data sets called files

 The file system must provide a mechanism for naming these data
 Each file system has its own set of conventions
 All modern operating systems use a hierarchical directory 

structure



Windows solution (I)

 Each device and each disk partition is identified by a letter
 A: and B: were used by the floppy drives
 C: is the first disk partition of the hard drive
 If hard drive has no other disk partition,

D: denotes the DVD drive
 Each device and each disk partition has its own hierarchy of 

folders



Windows solution (II)

 In a hierarchical file system files are grouped in directories and 
subdirectories
 The folders and subfolders of Windows

 These directories and subdirectories form one tree in each disk 
partition



UNIX solution

 Each device and disk partition has its own directory tree
 Disk partitions are glued together through the mount operation 

to form a single tree
 Typical user does not know where her files are stored

 Devices form a separate device hierarchy
 Can also be automounted



“Mounting” a file system
Root partition

bin

usr

/ Other partition

mount

After mount, root of second partition 
can be accessed as /usr



File organizations (I)

 Earlier file systems organized files into
user-specified records
 They were read and written atomically

 Starting with UNIX modern file systems organize files as 
sequence of bytes
 Can be read or written to in an arbitrary fashion



File organizations (II)

 Files are stored on disk using fixed-size records called blocks
 All files stored on a given device or disk partition have the

same block size
 Block sizes are transparent to the users
 They rarely know them



The case for fixed-size blocks (I)

 Programmer defined records were often too small
 A grade file would have had one record per student 

 Around 100 bytes
 Can pack around 40 student records in a single 4-kilobyte 

block.
 One single read replaces 40 reads



The case for fixed-size blocks (II)

 Could not read a file without knowing its record format
 Hindered the development of utility programs



Selecting the block size



Selecting the block size

 Much more important issue than selecting the page size of a VM 
system because
 Many very small files

 Small UNIX test files, …
 Some very large files

 Music, video, …



The 80-20 rule

 We can roughly say that
 80 percent of the files occupy 20 percent of the disk space
 Remaining 20 percent occupy the remaining 80 percent



The dilemma

 Small block sizes
 Minimize internal fragmentation

 Best for storing small files
 Provide poor data transfer rates for large files

 Too many small data transfers

 There is no single optimum block size
 Depends too much on file sizes 



Protection



Objective

 To provide controlled access to information

 Both Windows and UNIX let file owners decide who can access 
their files and what they can do
 Not true for more secure file systems

 They enforce security restrictions



Enforcing controlled access

 Two basic solutions
 Access control lists
 Tickets

 Each of them has its advantages and disadvantages



Access control lists (I)

User Permissions
Alice read, write
Bob read
Donna read, write

 Table specifying what each user can do 
with the file



Access control lists (II)



Access control lists (III)

 Main advantage:
 Very flexible: can easily add new users or change/revoke 

permissions of existing users

 Two main disadvantages:
 Very slow: must authenticate user at each access
 Can take more space than the file itself



Tickets (I)

 Also known as capabilities
 Specify what the ticket holder can do
 Must prevent users from forging tickets
 Use encryption

 Similar to using patterns that are hard to forge on bills
 Let kernel maintain them 

 Similar to bank doing all the bookkeeping for our accounts



Tickets (II)



Tickets (III)

 Main advantage:
 Very fast: must only check that the ticket is valid

 Two main disadvantages:
 Less flexible than access control lists: cannot revoke 

individual tickets
 Less control: ticket holders can make copies of tickets and 

distribute them to other users



Conclusion

 Best solution is to combine both approaches
 Use access control lists for long-term management of 

permissions
 Once a user has been authenticated, give him or her a ticket
 Limit ticket lifetimes to force users to be authenticated from 

time to time



UNIX solution

 UNIX
 Checks access control list of file whenever a file is opened
 Lets file descriptor act as a ticket until the file is closed



UNIX access control lists (I)

 File owner can specify three access rights
 read
 write 
 execute

for
 herself (user)
 a group in /etc/group (group)
 all other users (other)



UNIX access control lists (II)

 Three groups of three access rights
 Nine bits

 Can be tuned on and off 

rwxrwxrwx
User

(owner)Group Other



UNIX access control lists (III)

 rwx‐‐‐‐‐‐
Owner can do everything she wants with her file and nobody else 
can access it

 rw‐r‐‐r‐‐
Owner can read from and write to the file, everybody else can 
read the file

 rw‐rw‐‐‐‐
Owner and any member of group can read from and write to the 
file



UNIX access control lists (IV)

 Main advantage:
 Takes very little space:

9 bits plus 32 bits for group-ID

 Main disadvantage
 Less flexible than full access control lists:

Groups are managed by system administrator
 Works fairly well as long as groups remain stable



Unix File Semantics



File types

 Three types of files
 ordinary files:

uninterpreted sequences of bytes
 directories:

accessed through special system calls 
 special files: 

allow access to hardware devices



Ordinary files (I)

 Five basic file operations are implemented:
 open() returns a file descriptor
 read() reads so many bytes
 write() writes so many bytes
 lseek() changes position of current byte
 close() destroys the file descriptor



Ordinary files (II)

 All reading and writing are sequential.
The effect of direct access is achieved by manipulating the offset 
through lseek()

 Files are stored into fixed-size blocks
 Block boundaries are hidden from the users

Same as in MS-DOS/Windows



The file metadata

 Include file size, file owner, access rights, last time the file was 
modified, … 
but not the file name

 Stored in the file i-node
 Accessed through special system calls:
chmod(), chown(), ...



I/O buffering

 UNIX caches in main memory
 I-nodes of opened files
 Recently accessed file blocks

 Delayed write policy
 Increases the I/O throughput
 Will result in lost writes whenever a process or the system

crashes.
 Terminal I/O are buffered one line at a time.



 Map file names with i-node addresses

 Do not contain any other information!

Directories (I)

Name I-node
vi 203
edit 203
pico 426
emacs 173
… …



Directories (II)

 Two directory entries can point to the same
i-node

 Directory subtrees cannot cross file system boundaries unless a 
new file system is mounted somewhere in the subtree 

 To avoid loops in directory structure, directory files cannot have 
more than one pathname



Special files (I)

 Not files but devices:
 /dev/tty is your current terminal
 /dev/sdb0 your flash drive
 …

 Advantage:
 Allows to access devices such as flash drives, tape drive, … as 

if they were regular files



Special files (II)

 Disadvantage:
 We want to see flash drives as file systems integrated in our 

file system hierarchy not as single files

 A better solution is to mount them automatically when they get 
inserted (automount)
 Windows solution
 media/usb[0‐7] on Ubuntu



Unix File System Internals



Version 7 Implementation

 Each disk partition contains:
 A superblock containing the parameters of the file system disk 

partition

 An i-list with one i-node for each file or directory in the disk 
partition and a free list. 

 Data blocks (512 bytes)



A disk partition (“filesystem”)

Superblock
I-nodes

Data Blocks



The i-node (I)

 Each i-node contains:
 The user-id and the group-id of the

file owner
 The file protection bits,
 The file size, 
 The times of file creation, last usage and last modification,



The i-node (II)

 The number of directory entries pointing to the file, and 
 A flag indicating if the file is a directory, an ordinary file, or a 

special file. 
 Thirteen block addresses

 The file name(s) can be found in the directory entries pointing to 
the i-node



0 1 2 3 4 5 6 7 8 9 10 11 12

128 block
addresses

128 indirect block
addresses

128 block
addresses

128 block
addresses

. . .

Ten
direct
blocks

128
indirect
blocks

16,384 double indirect blocksBlock size = 512B

Storing block addresses
Three levels of indirection:
1283 block addresses



How it works (I)

 First ten blocks of file can be accessed directly from i-node
 10x512= 5,120 bytes

 Indirect block contains 512/4 = 128 addresses
 128x512= 64 kilobytes

 With two levels of indirection we can access
128x128 = 16K blocks
 16Kx512 = 8 megabytes



How it works (II)

 With three levels of indirection we can access
128x128X128 = 2M blocks
 2Mx512 = 1 gigabyte

 Maximum file size is
1 GB + 8 MB + 64KB + 5KB



Explanation

 File sizes can vary from a few hundred bytes to a few gigabytes 
with a hard limit of 4 gigabytes

 The designers of UNIX selected an i-node organization that 
 Wasted little space for small files
 Allowed very large files



Discussion

 What is the true cost of accessing large files?
 UNIX caches i-nodes and data blocks
 When we access sequentially a very large file we fetch only 

once each block of pointers
 Very small overhead

 Random access will result in more overhead



FFS Modifications 

 BSD introduced the “fast file system” (FFS)
 Superblock is replicated on different cylinders of disk
 Disk is divided into cylinder groups
 Each cylinder group has its own i-node table

 It minimizes disk arm motions
 Free list replaced by bit maps



Cylinder groups (I)

 In the old UNIX file system i-nodes were stored apart from the 
data blocks

I-nodes

Data blocks

Too many long seeks

 Poor disk throughput



Cylinder groups (II)

 FFS partitions the disk into cylinder groups containing both i-
nodes and data blocks

Most files have their 
data blocks in the 
same cylinder group
as their i-node

 Problem solved



The FFS i-node

 I-node has now 15 block addresses
 Minimum block size is 4K
 15th block address is never used



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

b/4 block
addresses

b/4 indirect block
addresses

b/4 block
addresses

b/4 block
addresses

. . .

Twelve
direct
blocks

b/4
indirect
blocks

b/4b/4 double indirect blocksBlock size b  4KB

FFS organization (I)



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1,024 block
addresses

1,024 indirect block
addresses

1,024 block
addresses

1,024 block
addresses

. . .

Twelve
direct
blocks

1,024
indirect
blocks

1,048,576 double indirect blocksBlock size = 4KB

FFS organization (II)



How it works

 In a 32 bit architecture, file size is limited to
232 bytes, that is, 4GB

 When block size is 4KB, we can access

 12 ×4KB = 48KB directly from i-node

 1,024 ×4KB = 4MB with one level of 
indirection

 4GB – 48KB – 4MB with two levels of 
indirection



The bit maps

 Each cylinder group contains a bit map of all available blocks in 
the cylinder group
The file system will attempt to keep consecutive blocks of the 
same file on the same cylinder group



Block sizes

 FFS uses larger blocks allows the division of a single file 
system block into 2, 4, or 8 fragments that can be used to store
 Small files
 Tails of larger files 



Explanations (I)

 Increasing the block size to 4KB eliminates the third level of 
indirection

 Keeping consecutive blocks of the same file on the same cylinder 
group reduces disk arm motions



Explanations (II)

 Allocating full blocks and block fragments 
 allows efficient sequential access to large files
 minimizes disk fragmentation

 Using 4K blocks without allowing 1K fragment would have wasted 
45.6% of the disk space
 This would not true today



Speeding up
metadata updates



Metadata issues

 Most of the good performance of FFS is due to its extensive use 
of I/O buffering
 Physical writes are totally asynchronous

 Metadata updates must follow a strict order
 FFS uses blocking writes for all metadata updates
 More recent file systems use better solutions



Deleting a file (I)

abc
def
ghi

i‐node‐1 

i‐node‐2 

i‐node‐3 

Assume we want to delete file “def”



Deleting a file (II)

abc
def
ghi

i‐node‐1 

i‐node‐3 

Cannot delete i-node before deleting
directory entry “def”

?



Deleting a file (III)

 Correct sequence is

1. Write to disk directory block containing deleted directory 
entry “def”

2. Write to disk i-node block containing deleted i-node

 Leaves the file system in a consistent state



Creating a file (I)

abc
ghi

i‐node‐1 

i‐node‐3 

Assume we want to create new file “tuv”



Creating a file (II)

abc
ghi
tuv

i‐node‐1 

i‐node‐3 

Cannot write add entry “tuv” to before creating 
the corresponding new i-node

?



Creating a file (III)

 Correct sequence is

1. Write to disk i-node block containing new i-node

2. Write to disk directory block containing new directory entry

 Leaves the file system in a consistent state



Handling metadata updates

 Out-of-order metadata updates can leave the file system in 
temporary inconsistent state
 Not a problem as long as the system does not crash between 

the two updates
 Systems are known to crash



FFS Solution

 FFS performs synchronous updates of directories and i-nodes
 Requires many more seeks
 Causes a serious performance bottleneck



Better solutions

 Log-structured file systems
 BSD-LFS

 Soft updates
 Journaling file systems
 Most popular approach



Journaling file systems

 Key Idea:
 Record metadata updates

 First on a log (the journal ) 
 Later at their proper location

 When recovering from a crash, use the journal to finalize all 
incomplete metadata updates



Step 1: update buffer and journal
Process

I/O Buffer

File 
System

Metadata
update

Journal



Step 2: update the file system

File 
SystemX

Process

I/O Buffer

Journal

Can now remove
update record
from the journal



Explanations

 Metadata updates are written twice on disk
 First in the journal
 Then, and only then, at the proper place in the file system

 All other updates remain asynchronous



Advantage

 Writing metadata updates twice is still cheaper than using a single 
blocking write because
 Journal is organized as a log and all writes are sequential
 Second update is non-blocking



Implementation rules

 Journaling file system must ensure that

 Every update is written first in the journal before the file system 
is updated

 Journal entries cannot be removed until the corresponding 
updates have been propagated to the file system

 Complicates I/O buffer design



Synchronous JFSes

 Write all metadata updates one by one in the journal without any 
delay

 Guarantee file system will always recover to a consistent state

 Guarantee that metadata updates will
never be lost

 All updates are durable



Asynchronous JFSes

 Writes to the journal are buffered until an entire buffer is full

 Guarantee file system will always recover to a consistent state

 Do not guarantee that metadata updates will
never be lost

 Are much faster than synchronous JFS



Recent File Systems



Linux file systems

 First Linux file system was a port of Minix file system
 Essentially a "toy" file system
 Maximum file size was 64MB 

 Many more recent file systems
 Ext1, ext2, ext3, ext4, …
 Others



Ext2

 Was essentially analogous to the UNIX fast file system we have 
discussed
 Fifteen block addresses per i-node
 Cylinder groups are called block groups

 Major differences include
 Larger maximum file size: 16 GB - 2 TB
 Various extensions

 Online compression, full ACLs, … 



Ext3fs

 Offers three levels of journaling

 Journal: journals metadata and data updates

 Ordered: guarantees that data updates will be written to disk 
before associated metadata are marked as committed 

 Writeback:  makes no such guarantees



Ext4fs (I)

 Evolution from ext3fs
 Can mount an ext4fs partition as ext3fs or

an ext3fs partition as ext4fs
 64-bit file system
 48-bit block addresses

 Can support very large volumes 
 One exabyte, that is, 230 gigabytes!
 Very large files (16 terabytes)



Ext4fs (II)

 Can support extents
 Becomes then incompatible with ext3fs

 Uses delayed extent allocation
 Reduces file fragmentation

 Especially when file grows
 Checksums contents of journal
 More reliable 



Windows file system (NTFS)

 Another journaling file system 
 Each file is an object composed of one or more data streams
 "Only the main stream of a file is preserved when it is 

copied to a FAT-formatted USB drive, attached to an e-
mail, or uploaded to a website."

Wikipedia 



NTFS data structures

 Master File Table (MFT)
 Contains most metadata
 Equivalent to UNIX i-node table

 Each file can have one or more MFT records depending on file 
size and attribute complexity

 MFT records contain
 Pointers to data blocks for most files
 Contents of very small files



NTFS block allocation policy

 Allocates block clusters instead of individual blocks.
 Each cluster has space for several contiguous blocks
 Cluster size is defined when the disk drive is formatted
 Improves performances but increases internal fragmentation

As disk capacities are now measured in terabytes,
we are more willing to sacrifice a few megabytes of disk 
space to internal fragmentation in order to  obtain a better
overall performance of the file system.



Mapped Files



Virtual memory and I/O buffering (I)

 Now:

Swap
area

Process in main memory

I/O buffer

Disk
Drive

System callsVirtual
Memory



Virtual memory and I/O buffering (II)

 In a VM system, we have
 Implicit transfers of data between main memory and swap 

area (page faults, etc.)
 Implicit transfers of information between the disk drive and 

the system I/O buffer
 Explicit transfers of information between the I/O buffer and 

the process address space controlled by the programmer



Virtual memory and I/O buffering (III)

 I/O buffering greatly reduces number of disk accesses
 Each I/O request must still be serviced by the OS:
 Two context switches per I/O request

 Why could we not map files directly into the process virtual 
address space?



Mapped files (I)

Swap
area

Process in main memory

Different 
Pager

Disk
Drive

Usual VM
Pager

A file



Mapped files (II)

 When a process opens a file, the whole file is mapped into the 
process virtual address space
 No data transfer takes place

 File blocks are brought in memory on demand
 File contents are accessed using regular program instructions (or 

library functions)
 Shared files are in shared memory segments



Mach implementation (I)

Swap
area

Process virtual address space

"External "
Pager

File
System

Usual VM
Pager

Program A file



Mach implementation (II)

 Mach organizes active parts of virtual address space of each 
process into address ranges

 Each address range can have a different pager
 Executable in file system for code segment
 Swap area for data segment
 Files themselves for mapped files



Linux implementation (I)

 mmap(…)
 Maps files or devices into memory
 Implements demand paging

 File blocks are brought on demand
 Lazy approach

 Can map a portion of a file (offset + number of bytes)



Syntax

 #include <sys/mman.h>
void *mmap(void *addr,

size_t length,
int prot,
int flags,
int fd,
off_t offset);

 Must first open the file!

Protection( rwx)

File descriptor

Start offset



A few options and flags

 Setting addr to NULL lets the system choose the start address of 
the mapped file

 Flag MAP_SHARED makes updates to the mapping visible to all 
processes that map the file

 Flag MAP_PRIVATE keeps these updates private
 Flag MAP_ANONYMOUS along with flag MAP_SHARED creates a 

shared memory segment



Linux implementation (II)

 #include <sys/mman.h>
int msync(void *addr,

size_t length,
int flags);

 Flushes back to disk all changes made in main memory from 
address addr to address 
addr + length – 1

 Many flag options

#include <sys/mman.h>
#include <sys/mman.h>



Discussion

 Solution requires very large address spaces
 Most programs will continue to access files through calls to read() 

and write()
 Function calls instead of system calls
 NO context switches!



A major problem

 Much harder to emulate the UNIX consistency model in a 
distributed file system
 How can we have atomic writes?
 Not a problem for laxer consistency model

(close-to-open consistency)


