
Chapter IX
File Systems

Jehan-François Pâris
jfparis@uh.edu

Chapter overview

 General organization
 Protection
 UNIX Implementation
 FFS
 Journaling file systems

 Recent file systems
 Mapped files

General Organization

The file system

 Provides long term storage of information.
 Will store data in stable storage (disk)
 Cannot be RAM because:
 Dynamic RAM loses its contents when powered off
 Static RAM is too expensive
 System crashes can corrupt contents of the main memory

A file system

File and file names

 Data managed by the file system are grouped in user-defined
data sets called files

 The file system must provide a mechanism for naming these data
 Each file system has its own set of conventions
 All modern operating systems use a hierarchical directory

structure

Windows solution (I)

 Each device and each disk partition is identified by a letter
 A: and B: were used by the floppy drives
 C: is the first disk partition of the hard drive
 If hard drive has no other disk partition,

D: denotes the DVD drive
 Each device and each disk partition has its own hierarchy of

folders

Windows solution (II)

 In a hierarchical file system files are grouped in directories and
subdirectories
 The folders and subfolders of Windows

 These directories and subdirectories form one tree in each disk
partition

UNIX solution

 Each device and disk partition has its own directory tree
 Disk partitions are glued together through the mount operation

to form a single tree
 Typical user does not know where her files are stored

 Devices form a separate device hierarchy
 Can also be automounted

“Mounting” a file system
Root partition

bin

usr

/ Other partition

mount

After mount, root of second partition
can be accessed as /usr

File organizations (I)

 Earlier file systems organized files into
user-specified records
 They were read and written atomically

 Starting with UNIX modern file systems organize files as
sequence of bytes
 Can be read or written to in an arbitrary fashion

File organizations (II)

 Files are stored on disk using fixed-size records called blocks
 All files stored on a given device or disk partition have the

same block size
 Block sizes are transparent to the users
 They rarely know them

The case for fixed-size blocks (I)

 Programmer defined records were often too small
 A grade file would have had one record per student

 Around 100 bytes
 Can pack around 40 student records in a single 4-kilobyte

block.
 One single read replaces 40 reads

The case for fixed-size blocks (II)

 Could not read a file without knowing its record format
 Hindered the development of utility programs

Selecting the block size

Selecting the block size

 Much more important issue than selecting the page size of a VM
system because
 Many very small files

 Small UNIX test files, …
 Some very large files

 Music, video, …

The 80-20 rule

 We can roughly say that
 80 percent of the files occupy 20 percent of the disk space
 Remaining 20 percent occupy the remaining 80 percent

The dilemma

 Small block sizes
 Minimize internal fragmentation

 Best for storing small files
 Provide poor data transfer rates for large files

 Too many small data transfers

 There is no single optimum block size
 Depends too much on file sizes

Protection

Objective

 To provide controlled access to information

 Both Windows and UNIX let file owners decide who can access
their files and what they can do
 Not true for more secure file systems

 They enforce security restrictions

Enforcing controlled access

 Two basic solutions
 Access control lists
 Tickets

 Each of them has its advantages and disadvantages

Access control lists (I)

User Permissions
Alice read, write
Bob read
Donna read, write

 Table specifying what each user can do
with the file

Access control lists (II)

Access control lists (III)

 Main advantage:
 Very flexible: can easily add new users or change/revoke

permissions of existing users

 Two main disadvantages:
 Very slow: must authenticate user at each access
 Can take more space than the file itself

Tickets (I)

 Also known as capabilities
 Specify what the ticket holder can do
 Must prevent users from forging tickets
 Use encryption

 Similar to using patterns that are hard to forge on bills
 Let kernel maintain them

 Similar to bank doing all the bookkeeping for our accounts

Tickets (II)

Tickets (III)

 Main advantage:
 Very fast: must only check that the ticket is valid

 Two main disadvantages:
 Less flexible than access control lists: cannot revoke

individual tickets
 Less control: ticket holders can make copies of tickets and

distribute them to other users

Conclusion

 Best solution is to combine both approaches
 Use access control lists for long-term management of

permissions
 Once a user has been authenticated, give him or her a ticket
 Limit ticket lifetimes to force users to be authenticated from

time to time

UNIX solution

 UNIX
 Checks access control list of file whenever a file is opened
 Lets file descriptor act as a ticket until the file is closed

UNIX access control lists (I)

 File owner can specify three access rights
 read
 write
 execute

for
 herself (user)
 a group in /etc/group (group)
 all other users (other)

UNIX access control lists (II)

 Three groups of three access rights
 Nine bits

 Can be tuned on and off

rwxrwxrwx
User

(owner)Group Other

UNIX access control lists (III)

 rwx‐‐‐‐‐‐
Owner can do everything she wants with her file and nobody else
can access it

 rw‐r‐‐r‐‐
Owner can read from and write to the file, everybody else can
read the file

 rw‐rw‐‐‐‐
Owner and any member of group can read from and write to the
file

UNIX access control lists (IV)

 Main advantage:
 Takes very little space:

9 bits plus 32 bits for group-ID

 Main disadvantage
 Less flexible than full access control lists:

Groups are managed by system administrator
 Works fairly well as long as groups remain stable

Unix File Semantics

File types

 Three types of files
 ordinary files:

uninterpreted sequences of bytes
 directories:

accessed through special system calls
 special files:

allow access to hardware devices

Ordinary files (I)

 Five basic file operations are implemented:
 open() returns a file descriptor
 read() reads so many bytes
 write() writes so many bytes
 lseek() changes position of current byte
 close() destroys the file descriptor

Ordinary files (II)

 All reading and writing are sequential.
The effect of direct access is achieved by manipulating the offset
through lseek()

 Files are stored into fixed-size blocks
 Block boundaries are hidden from the users

Same as in MS-DOS/Windows

The file metadata

 Include file size, file owner, access rights, last time the file was
modified, …
but not the file name

 Stored in the file i-node
 Accessed through special system calls:
chmod(), chown(), ...

I/O buffering

 UNIX caches in main memory
 I-nodes of opened files
 Recently accessed file blocks

 Delayed write policy
 Increases the I/O throughput
 Will result in lost writes whenever a process or the system

crashes.
 Terminal I/O are buffered one line at a time.

 Map file names with i-node addresses

 Do not contain any other information!

Directories (I)

Name I-node
vi 203
edit 203
pico 426
emacs 173
… …

Directories (II)

 Two directory entries can point to the same
i-node

 Directory subtrees cannot cross file system boundaries unless a
new file system is mounted somewhere in the subtree

 To avoid loops in directory structure, directory files cannot have
more than one pathname

Special files (I)

 Not files but devices:
 /dev/tty is your current terminal
 /dev/sdb0 your flash drive
 …

 Advantage:
 Allows to access devices such as flash drives, tape drive, … as

if they were regular files

Special files (II)

 Disadvantage:
 We want to see flash drives as file systems integrated in our

file system hierarchy not as single files

 A better solution is to mount them automatically when they get
inserted (automount)
 Windows solution
 media/usb[0‐7] on Ubuntu

Unix File System Internals

Version 7 Implementation

 Each disk partition contains:
 A superblock containing the parameters of the file system disk

partition

 An i-list with one i-node for each file or directory in the disk
partition and a free list.

 Data blocks (512 bytes)

A disk partition (“filesystem”)

Superblock
I-nodes

Data Blocks

The i-node (I)

 Each i-node contains:
 The user-id and the group-id of the

file owner
 The file protection bits,
 The file size,
 The times of file creation, last usage and last modification,

The i-node (II)

 The number of directory entries pointing to the file, and
 A flag indicating if the file is a directory, an ordinary file, or a

special file.
 Thirteen block addresses

 The file name(s) can be found in the directory entries pointing to
the i-node

0 1 2 3 4 5 6 7 8 9 10 11 12

128 block
addresses

128 indirect block
addresses

128 block
addresses

128 block
addresses

. . .

Ten
direct
blocks

128
indirect
blocks

16,384 double indirect blocksBlock size = 512B

Storing block addresses
Three levels of indirection:
1283 block addresses

How it works (I)

 First ten blocks of file can be accessed directly from i-node
 10x512= 5,120 bytes

 Indirect block contains 512/4 = 128 addresses
 128x512= 64 kilobytes

 With two levels of indirection we can access
128x128 = 16K blocks
 16Kx512 = 8 megabytes

How it works (II)

 With three levels of indirection we can access
128x128X128 = 2M blocks
 2Mx512 = 1 gigabyte

 Maximum file size is
1 GB + 8 MB + 64KB + 5KB

Explanation

 File sizes can vary from a few hundred bytes to a few gigabytes
with a hard limit of 4 gigabytes

 The designers of UNIX selected an i-node organization that
 Wasted little space for small files
 Allowed very large files

Discussion

 What is the true cost of accessing large files?
 UNIX caches i-nodes and data blocks
 When we access sequentially a very large file we fetch only

once each block of pointers
 Very small overhead

 Random access will result in more overhead

FFS Modifications

 BSD introduced the “fast file system” (FFS)
 Superblock is replicated on different cylinders of disk
 Disk is divided into cylinder groups
 Each cylinder group has its own i-node table

 It minimizes disk arm motions
 Free list replaced by bit maps

Cylinder groups (I)

 In the old UNIX file system i-nodes were stored apart from the
data blocks

I-nodes

Data blocks

Too many long seeks

 Poor disk throughput

Cylinder groups (II)

 FFS partitions the disk into cylinder groups containing both i-
nodes and data blocks

Most files have their
data blocks in the
same cylinder group
as their i-node

 Problem solved

The FFS i-node

 I-node has now 15 block addresses
 Minimum block size is 4K
 15th block address is never used

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

b/4 block
addresses

b/4 indirect block
addresses

b/4 block
addresses

b/4 block
addresses

. . .

Twelve
direct
blocks

b/4
indirect
blocks

b/4b/4 double indirect blocksBlock size b  4KB

FFS organization (I)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1,024 block
addresses

1,024 indirect block
addresses

1,024 block
addresses

1,024 block
addresses

. . .

Twelve
direct
blocks

1,024
indirect
blocks

1,048,576 double indirect blocksBlock size = 4KB

FFS organization (II)

How it works

 In a 32 bit architecture, file size is limited to
232 bytes, that is, 4GB

 When block size is 4KB, we can access

 12 ×4KB = 48KB directly from i-node

 1,024 ×4KB = 4MB with one level of
indirection

 4GB – 48KB – 4MB with two levels of
indirection

The bit maps

 Each cylinder group contains a bit map of all available blocks in
the cylinder group
The file system will attempt to keep consecutive blocks of the
same file on the same cylinder group

Block sizes

 FFS uses larger blocks allows the division of a single file
system block into 2, 4, or 8 fragments that can be used to store
 Small files
 Tails of larger files

Explanations (I)

 Increasing the block size to 4KB eliminates the third level of
indirection

 Keeping consecutive blocks of the same file on the same cylinder
group reduces disk arm motions

Explanations (II)

 Allocating full blocks and block fragments
 allows efficient sequential access to large files
 minimizes disk fragmentation

 Using 4K blocks without allowing 1K fragment would have wasted
45.6% of the disk space
 This would not true today

Speeding up
metadata updates

Metadata issues

 Most of the good performance of FFS is due to its extensive use
of I/O buffering
 Physical writes are totally asynchronous

 Metadata updates must follow a strict order
 FFS uses blocking writes for all metadata updates
 More recent file systems use better solutions

Deleting a file (I)

abc
def
ghi

i‐node‐1

i‐node‐2

i‐node‐3

Assume we want to delete file “def”

Deleting a file (II)

abc
def
ghi

i‐node‐1

i‐node‐3

Cannot delete i-node before deleting
directory entry “def”

?

Deleting a file (III)

 Correct sequence is

1. Write to disk directory block containing deleted directory
entry “def”

2. Write to disk i-node block containing deleted i-node

 Leaves the file system in a consistent state

Creating a file (I)

abc
ghi

i‐node‐1

i‐node‐3

Assume we want to create new file “tuv”

Creating a file (II)

abc
ghi
tuv

i‐node‐1

i‐node‐3

Cannot write add entry “tuv” to before creating
the corresponding new i-node

?

Creating a file (III)

 Correct sequence is

1. Write to disk i-node block containing new i-node

2. Write to disk directory block containing new directory entry

 Leaves the file system in a consistent state

Handling metadata updates

 Out-of-order metadata updates can leave the file system in
temporary inconsistent state
 Not a problem as long as the system does not crash between

the two updates
 Systems are known to crash

FFS Solution

 FFS performs synchronous updates of directories and i-nodes
 Requires many more seeks
 Causes a serious performance bottleneck

Better solutions

 Log-structured file systems
 BSD-LFS

 Soft updates
 Journaling file systems
 Most popular approach

Journaling file systems

 Key Idea:
 Record metadata updates

 First on a log (the journal)
 Later at their proper location

 When recovering from a crash, use the journal to finalize all
incomplete metadata updates

Step 1: update buffer and journal
Process

I/O Buffer

File
System

Metadata
update

Journal

Step 2: update the file system

File
SystemX

Process

I/O Buffer

Journal

Can now remove
update record
from the journal

Explanations

 Metadata updates are written twice on disk
 First in the journal
 Then, and only then, at the proper place in the file system

 All other updates remain asynchronous

Advantage

 Writing metadata updates twice is still cheaper than using a single
blocking write because
 Journal is organized as a log and all writes are sequential
 Second update is non-blocking

Implementation rules

 Journaling file system must ensure that

 Every update is written first in the journal before the file system
is updated

 Journal entries cannot be removed until the corresponding
updates have been propagated to the file system

 Complicates I/O buffer design

Synchronous JFSes

 Write all metadata updates one by one in the journal without any
delay

 Guarantee file system will always recover to a consistent state

 Guarantee that metadata updates will
never be lost

 All updates are durable

Asynchronous JFSes

 Writes to the journal are buffered until an entire buffer is full

 Guarantee file system will always recover to a consistent state

 Do not guarantee that metadata updates will
never be lost

 Are much faster than synchronous JFS

Recent File Systems

Linux file systems

 First Linux file system was a port of Minix file system
 Essentially a "toy" file system
 Maximum file size was 64MB

 Many more recent file systems
 Ext1, ext2, ext3, ext4, …
 Others

Ext2

 Was essentially analogous to the UNIX fast file system we have
discussed
 Fifteen block addresses per i-node
 Cylinder groups are called block groups

 Major differences include
 Larger maximum file size: 16 GB - 2 TB
 Various extensions

 Online compression, full ACLs, …

Ext3fs

 Offers three levels of journaling

 Journal: journals metadata and data updates

 Ordered: guarantees that data updates will be written to disk
before associated metadata are marked as committed

 Writeback: makes no such guarantees

Ext4fs (I)

 Evolution from ext3fs
 Can mount an ext4fs partition as ext3fs or

an ext3fs partition as ext4fs
 64-bit file system
 48-bit block addresses

 Can support very large volumes
 One exabyte, that is, 230 gigabytes!
 Very large files (16 terabytes)

Ext4fs (II)

 Can support extents
 Becomes then incompatible with ext3fs

 Uses delayed extent allocation
 Reduces file fragmentation

 Especially when file grows
 Checksums contents of journal
 More reliable

Windows file system (NTFS)

 Another journaling file system
 Each file is an object composed of one or more data streams
 "Only the main stream of a file is preserved when it is

copied to a FAT-formatted USB drive, attached to an e-
mail, or uploaded to a website."

Wikipedia

NTFS data structures

 Master File Table (MFT)
 Contains most metadata
 Equivalent to UNIX i-node table

 Each file can have one or more MFT records depending on file
size and attribute complexity

 MFT records contain
 Pointers to data blocks for most files
 Contents of very small files

NTFS block allocation policy

 Allocates block clusters instead of individual blocks.
 Each cluster has space for several contiguous blocks
 Cluster size is defined when the disk drive is formatted
 Improves performances but increases internal fragmentation

As disk capacities are now measured in terabytes,
we are more willing to sacrifice a few megabytes of disk
space to internal fragmentation in order to obtain a better
overall performance of the file system.

Mapped Files

Virtual memory and I/O buffering (I)

 Now:

Swap
area

Process in main memory

I/O buffer

Disk
Drive

System callsVirtual
Memory

Virtual memory and I/O buffering (II)

 In a VM system, we have
 Implicit transfers of data between main memory and swap

area (page faults, etc.)
 Implicit transfers of information between the disk drive and

the system I/O buffer
 Explicit transfers of information between the I/O buffer and

the process address space controlled by the programmer

Virtual memory and I/O buffering (III)

 I/O buffering greatly reduces number of disk accesses
 Each I/O request must still be serviced by the OS:
 Two context switches per I/O request

 Why could we not map files directly into the process virtual
address space?

Mapped files (I)

Swap
area

Process in main memory

Different
Pager

Disk
Drive

Usual VM
Pager

A file

Mapped files (II)

 When a process opens a file, the whole file is mapped into the
process virtual address space
 No data transfer takes place

 File blocks are brought in memory on demand
 File contents are accessed using regular program instructions (or

library functions)
 Shared files are in shared memory segments

Mach implementation (I)

Swap
area

Process virtual address space

"External "
Pager

File
System

Usual VM
Pager

Program A file

Mach implementation (II)

 Mach organizes active parts of virtual address space of each
process into address ranges

 Each address range can have a different pager
 Executable in file system for code segment
 Swap area for data segment
 Files themselves for mapped files

Linux implementation (I)

 mmap(…)
 Maps files or devices into memory
 Implements demand paging

 File blocks are brought on demand
 Lazy approach

 Can map a portion of a file (offset + number of bytes)

Syntax

 #include <sys/mman.h>
void *mmap(void *addr,

size_t length,
int prot,
int flags,
int fd,
off_t offset);

 Must first open the file!

Protection(rwx)

File descriptor

Start offset

A few options and flags

 Setting addr to NULL lets the system choose the start address of
the mapped file

 Flag MAP_SHARED makes updates to the mapping visible to all
processes that map the file

 Flag MAP_PRIVATE keeps these updates private
 Flag MAP_ANONYMOUS along with flag MAP_SHARED creates a

shared memory segment

Linux implementation (II)

 #include <sys/mman.h>
int msync(void *addr,

size_t length,
int flags);

 Flushes back to disk all changes made in main memory from
address addr to address
addr + length – 1

 Many flag options

#include <sys/mman.h>
#include <sys/mman.h>

Discussion

 Solution requires very large address spaces
 Most programs will continue to access files through calls to read()

and write()
 Function calls instead of system calls
 NO context switches!

A major problem

 Much harder to emulate the UNIX consistency model in a
distributed file system
 How can we have atomic writes?
 Not a problem for laxer consistency model

(close-to-open consistency)

