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General Organization



The file system

 Provides long term storage of information. 
 Will store data in stable storage (disk)
 Cannot be RAM because:
 Dynamic RAM loses its contents when powered off
 Static RAM is too expensive
 System crashes can corrupt contents of the main memory



A file system



File and file names

 Data managed by the file system are grouped in user-defined
data sets called files

 The file system must provide a mechanism for naming these data
 Each file system has its own set of conventions
 All modern operating systems use a hierarchical directory 

structure



Windows solution (I)

 Each device and each disk partition is identified by a letter
 A: and B: were used by the floppy drives
 C: is the first disk partition of the hard drive
 If hard drive has no other disk partition,

D: denotes the DVD drive
 Each device and each disk partition has its own hierarchy of 

folders



Windows solution (II)

 In a hierarchical file system files are grouped in directories and 
subdirectories
 The folders and subfolders of Windows

 These directories and subdirectories form one tree in each disk 
partition



UNIX solution

 Each device and disk partition has its own directory tree
 Disk partitions are glued together through the mount operation 

to form a single tree
 Typical user does not know where her files are stored

 Devices form a separate device hierarchy
 Can also be automounted



“Mounting” a file system
Root partition

bin

usr

/ Other partition

mount

After mount, root of second partition 
can be accessed as /usr



File organizations (I)

 Earlier file systems organized files into
user-specified records
 They were read and written atomically

 Starting with UNIX modern file systems organize files as 
sequence of bytes
 Can be read or written to in an arbitrary fashion



File organizations (II)

 Files are stored on disk using fixed-size records called blocks
 All files stored on a given device or disk partition have the

same block size
 Block sizes are transparent to the users
 They rarely know them



The case for fixed-size blocks (I)

 Programmer defined records were often too small
 A grade file would have had one record per student 

 Around 100 bytes
 Can pack around 40 student records in a single 4-kilobyte 

block.
 One single read replaces 40 reads



The case for fixed-size blocks (II)

 Could not read a file without knowing its record format
 Hindered the development of utility programs



Selecting the block size



Selecting the block size

 Much more important issue than selecting the page size of a VM 
system because
 Many very small files

 Small UNIX test files, …
 Some very large files

 Music, video, …



The 80-20 rule

 We can roughly say that
 80 percent of the files occupy 20 percent of the disk space
 Remaining 20 percent occupy the remaining 80 percent



The dilemma

 Small block sizes
 Minimize internal fragmentation

 Best for storing small files
 Provide poor data transfer rates for large files

 Too many small data transfers

 There is no single optimum block size
 Depends too much on file sizes 



Protection



Objective

 To provide controlled access to information

 Both Windows and UNIX let file owners decide who can access 
their files and what they can do
 Not true for more secure file systems

 They enforce security restrictions



Enforcing controlled access

 Two basic solutions
 Access control lists
 Tickets

 Each of them has its advantages and disadvantages



Access control lists (I)

User Permissions
Alice read, write
Bob read
Donna read, write

 Table specifying what each user can do 
with the file



Access control lists (II)



Access control lists (III)

 Main advantage:
 Very flexible: can easily add new users or change/revoke 

permissions of existing users

 Two main disadvantages:
 Very slow: must authenticate user at each access
 Can take more space than the file itself



Tickets (I)

 Also known as capabilities
 Specify what the ticket holder can do
 Must prevent users from forging tickets
 Use encryption

 Similar to using patterns that are hard to forge on bills
 Let kernel maintain them 

 Similar to bank doing all the bookkeeping for our accounts



Tickets (II)



Tickets (III)

 Main advantage:
 Very fast: must only check that the ticket is valid

 Two main disadvantages:
 Less flexible than access control lists: cannot revoke 

individual tickets
 Less control: ticket holders can make copies of tickets and 

distribute them to other users



Conclusion

 Best solution is to combine both approaches
 Use access control lists for long-term management of 

permissions
 Once a user has been authenticated, give him or her a ticket
 Limit ticket lifetimes to force users to be authenticated from 

time to time



UNIX solution

 UNIX
 Checks access control list of file whenever a file is opened
 Lets file descriptor act as a ticket until the file is closed



UNIX access control lists (I)

 File owner can specify three access rights
 read
 write 
 execute

for
 herself (user)
 a group in /etc/group (group)
 all other users (other)



UNIX access control lists (II)

 Three groups of three access rights
 Nine bits

 Can be tuned on and off 

rwxrwxrwx
User

(owner)Group Other



UNIX access control lists (III)

 rwx‐‐‐‐‐‐
Owner can do everything she wants with her file and nobody else 
can access it

 rw‐r‐‐r‐‐
Owner can read from and write to the file, everybody else can 
read the file

 rw‐rw‐‐‐‐
Owner and any member of group can read from and write to the 
file



UNIX access control lists (IV)

 Main advantage:
 Takes very little space:

9 bits plus 32 bits for group-ID

 Main disadvantage
 Less flexible than full access control lists:

Groups are managed by system administrator
 Works fairly well as long as groups remain stable



Unix File Semantics



File types

 Three types of files
 ordinary files:

uninterpreted sequences of bytes
 directories:

accessed through special system calls 
 special files: 

allow access to hardware devices



Ordinary files (I)

 Five basic file operations are implemented:
 open() returns a file descriptor
 read() reads so many bytes
 write() writes so many bytes
 lseek() changes position of current byte
 close() destroys the file descriptor



Ordinary files (II)

 All reading and writing are sequential.
The effect of direct access is achieved by manipulating the offset 
through lseek()

 Files are stored into fixed-size blocks
 Block boundaries are hidden from the users

Same as in MS-DOS/Windows



The file metadata

 Include file size, file owner, access rights, last time the file was 
modified, … 
but not the file name

 Stored in the file i-node
 Accessed through special system calls:
chmod(), chown(), ...



I/O buffering

 UNIX caches in main memory
 I-nodes of opened files
 Recently accessed file blocks

 Delayed write policy
 Increases the I/O throughput
 Will result in lost writes whenever a process or the system

crashes.
 Terminal I/O are buffered one line at a time.



 Map file names with i-node addresses

 Do not contain any other information!

Directories (I)

Name I-node
vi 203
edit 203
pico 426
emacs 173
… …



Directories (II)

 Two directory entries can point to the same
i-node

 Directory subtrees cannot cross file system boundaries unless a 
new file system is mounted somewhere in the subtree 

 To avoid loops in directory structure, directory files cannot have 
more than one pathname



Special files (I)

 Not files but devices:
 /dev/tty is your current terminal
 /dev/sdb0 your flash drive
 …

 Advantage:
 Allows to access devices such as flash drives, tape drive, … as 

if they were regular files



Special files (II)

 Disadvantage:
 We want to see flash drives as file systems integrated in our 

file system hierarchy not as single files

 A better solution is to mount them automatically when they get 
inserted (automount)
 Windows solution
 media/usb[0‐7] on Ubuntu



Unix File System Internals



Version 7 Implementation

 Each disk partition contains:
 A superblock containing the parameters of the file system disk 

partition

 An i-list with one i-node for each file or directory in the disk 
partition and a free list. 

 Data blocks (512 bytes)



A disk partition (“filesystem”)

Superblock
I-nodes

Data Blocks



The i-node (I)

 Each i-node contains:
 The user-id and the group-id of the

file owner
 The file protection bits,
 The file size, 
 The times of file creation, last usage and last modification,



The i-node (II)

 The number of directory entries pointing to the file, and 
 A flag indicating if the file is a directory, an ordinary file, or a 

special file. 
 Thirteen block addresses

 The file name(s) can be found in the directory entries pointing to 
the i-node



0 1 2 3 4 5 6 7 8 9 10 11 12

128 block
addresses

128 indirect block
addresses

128 block
addresses

128 block
addresses

. . .

Ten
direct
blocks

128
indirect
blocks

16,384 double indirect blocksBlock size = 512B

Storing block addresses
Three levels of indirection:
1283 block addresses



How it works (I)

 First ten blocks of file can be accessed directly from i-node
 10x512= 5,120 bytes

 Indirect block contains 512/4 = 128 addresses
 128x512= 64 kilobytes

 With two levels of indirection we can access
128x128 = 16K blocks
 16Kx512 = 8 megabytes



How it works (II)

 With three levels of indirection we can access
128x128X128 = 2M blocks
 2Mx512 = 1 gigabyte

 Maximum file size is
1 GB + 8 MB + 64KB + 5KB



Explanation

 File sizes can vary from a few hundred bytes to a few gigabytes 
with a hard limit of 4 gigabytes

 The designers of UNIX selected an i-node organization that 
 Wasted little space for small files
 Allowed very large files



Discussion

 What is the true cost of accessing large files?
 UNIX caches i-nodes and data blocks
 When we access sequentially a very large file we fetch only 

once each block of pointers
 Very small overhead

 Random access will result in more overhead



FFS Modifications 

 BSD introduced the “fast file system” (FFS)
 Superblock is replicated on different cylinders of disk
 Disk is divided into cylinder groups
 Each cylinder group has its own i-node table

 It minimizes disk arm motions
 Free list replaced by bit maps



Cylinder groups (I)

 In the old UNIX file system i-nodes were stored apart from the 
data blocks

I-nodes

Data blocks

Too many long seeks

 Poor disk throughput



Cylinder groups (II)

 FFS partitions the disk into cylinder groups containing both i-
nodes and data blocks

Most files have their 
data blocks in the 
same cylinder group
as their i-node

 Problem solved



The FFS i-node

 I-node has now 15 block addresses
 Minimum block size is 4K
 15th block address is never used



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

b/4 block
addresses

b/4 indirect block
addresses

b/4 block
addresses

b/4 block
addresses

. . .

Twelve
direct
blocks

b/4
indirect
blocks

b/4b/4 double indirect blocksBlock size b  4KB

FFS organization (I)



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1,024 block
addresses

1,024 indirect block
addresses

1,024 block
addresses

1,024 block
addresses

. . .

Twelve
direct
blocks

1,024
indirect
blocks

1,048,576 double indirect blocksBlock size = 4KB

FFS organization (II)



How it works

 In a 32 bit architecture, file size is limited to
232 bytes, that is, 4GB

 When block size is 4KB, we can access

 12 ×4KB = 48KB directly from i-node

 1,024 ×4KB = 4MB with one level of 
indirection

 4GB – 48KB – 4MB with two levels of 
indirection



The bit maps

 Each cylinder group contains a bit map of all available blocks in 
the cylinder group
The file system will attempt to keep consecutive blocks of the 
same file on the same cylinder group



Block sizes

 FFS uses larger blocks allows the division of a single file 
system block into 2, 4, or 8 fragments that can be used to store
 Small files
 Tails of larger files 



Explanations (I)

 Increasing the block size to 4KB eliminates the third level of 
indirection

 Keeping consecutive blocks of the same file on the same cylinder 
group reduces disk arm motions



Explanations (II)

 Allocating full blocks and block fragments 
 allows efficient sequential access to large files
 minimizes disk fragmentation

 Using 4K blocks without allowing 1K fragment would have wasted 
45.6% of the disk space
 This would not true today



Speeding up
metadata updates



Metadata issues

 Most of the good performance of FFS is due to its extensive use 
of I/O buffering
 Physical writes are totally asynchronous

 Metadata updates must follow a strict order
 FFS uses blocking writes for all metadata updates
 More recent file systems use better solutions



Deleting a file (I)

abc
def
ghi

i‐node‐1 

i‐node‐2 

i‐node‐3 

Assume we want to delete file “def”



Deleting a file (II)

abc
def
ghi

i‐node‐1 

i‐node‐3 

Cannot delete i-node before deleting
directory entry “def”

?



Deleting a file (III)

 Correct sequence is

1. Write to disk directory block containing deleted directory 
entry “def”

2. Write to disk i-node block containing deleted i-node

 Leaves the file system in a consistent state



Creating a file (I)

abc
ghi

i‐node‐1 

i‐node‐3 

Assume we want to create new file “tuv”



Creating a file (II)

abc
ghi
tuv

i‐node‐1 

i‐node‐3 

Cannot write add entry “tuv” to before creating 
the corresponding new i-node

?



Creating a file (III)

 Correct sequence is

1. Write to disk i-node block containing new i-node

2. Write to disk directory block containing new directory entry

 Leaves the file system in a consistent state



Handling metadata updates

 Out-of-order metadata updates can leave the file system in 
temporary inconsistent state
 Not a problem as long as the system does not crash between 

the two updates
 Systems are known to crash



FFS Solution

 FFS performs synchronous updates of directories and i-nodes
 Requires many more seeks
 Causes a serious performance bottleneck



Better solutions

 Log-structured file systems
 BSD-LFS

 Soft updates
 Journaling file systems
 Most popular approach



Journaling file systems

 Key Idea:
 Record metadata updates

 First on a log (the journal ) 
 Later at their proper location

 When recovering from a crash, use the journal to finalize all 
incomplete metadata updates



Step 1: update buffer and journal
Process

I/O Buffer

File 
System

Metadata
update

Journal



Step 2: update the file system

File 
SystemX

Process

I/O Buffer

Journal

Can now remove
update record
from the journal



Explanations

 Metadata updates are written twice on disk
 First in the journal
 Then, and only then, at the proper place in the file system

 All other updates remain asynchronous



Advantage

 Writing metadata updates twice is still cheaper than using a single 
blocking write because
 Journal is organized as a log and all writes are sequential
 Second update is non-blocking



Implementation rules

 Journaling file system must ensure that

 Every update is written first in the journal before the file system 
is updated

 Journal entries cannot be removed until the corresponding 
updates have been propagated to the file system

 Complicates I/O buffer design



Synchronous JFSes

 Write all metadata updates one by one in the journal without any 
delay

 Guarantee file system will always recover to a consistent state

 Guarantee that metadata updates will
never be lost

 All updates are durable



Asynchronous JFSes

 Writes to the journal are buffered until an entire buffer is full

 Guarantee file system will always recover to a consistent state

 Do not guarantee that metadata updates will
never be lost

 Are much faster than synchronous JFS



Recent File Systems



Linux file systems

 First Linux file system was a port of Minix file system
 Essentially a "toy" file system
 Maximum file size was 64MB 

 Many more recent file systems
 Ext1, ext2, ext3, ext4, …
 Others



Ext2

 Was essentially analogous to the UNIX fast file system we have 
discussed
 Fifteen block addresses per i-node
 Cylinder groups are called block groups

 Major differences include
 Larger maximum file size: 16 GB - 2 TB
 Various extensions

 Online compression, full ACLs, … 



Ext3fs

 Offers three levels of journaling

 Journal: journals metadata and data updates

 Ordered: guarantees that data updates will be written to disk 
before associated metadata are marked as committed 

 Writeback:  makes no such guarantees



Ext4fs (I)

 Evolution from ext3fs
 Can mount an ext4fs partition as ext3fs or

an ext3fs partition as ext4fs
 64-bit file system
 48-bit block addresses

 Can support very large volumes 
 One exabyte, that is, 230 gigabytes!
 Very large files (16 terabytes)



Ext4fs (II)

 Can support extents
 Becomes then incompatible with ext3fs

 Uses delayed extent allocation
 Reduces file fragmentation

 Especially when file grows
 Checksums contents of journal
 More reliable 



Windows file system (NTFS)

 Another journaling file system 
 Each file is an object composed of one or more data streams
 "Only the main stream of a file is preserved when it is 

copied to a FAT-formatted USB drive, attached to an e-
mail, or uploaded to a website."

Wikipedia 



NTFS data structures

 Master File Table (MFT)
 Contains most metadata
 Equivalent to UNIX i-node table

 Each file can have one or more MFT records depending on file 
size and attribute complexity

 MFT records contain
 Pointers to data blocks for most files
 Contents of very small files



NTFS block allocation policy

 Allocates block clusters instead of individual blocks.
 Each cluster has space for several contiguous blocks
 Cluster size is defined when the disk drive is formatted
 Improves performances but increases internal fragmentation

As disk capacities are now measured in terabytes,
we are more willing to sacrifice a few megabytes of disk 
space to internal fragmentation in order to  obtain a better
overall performance of the file system.



Mapped Files



Virtual memory and I/O buffering (I)

 Now:

Swap
area

Process in main memory

I/O buffer

Disk
Drive

System callsVirtual
Memory



Virtual memory and I/O buffering (II)

 In a VM system, we have
 Implicit transfers of data between main memory and swap 

area (page faults, etc.)
 Implicit transfers of information between the disk drive and 

the system I/O buffer
 Explicit transfers of information between the I/O buffer and 

the process address space controlled by the programmer



Virtual memory and I/O buffering (III)

 I/O buffering greatly reduces number of disk accesses
 Each I/O request must still be serviced by the OS:
 Two context switches per I/O request

 Why could we not map files directly into the process virtual 
address space?



Mapped files (I)

Swap
area

Process in main memory

Different 
Pager

Disk
Drive

Usual VM
Pager

A file



Mapped files (II)

 When a process opens a file, the whole file is mapped into the 
process virtual address space
 No data transfer takes place

 File blocks are brought in memory on demand
 File contents are accessed using regular program instructions (or 

library functions)
 Shared files are in shared memory segments



Mach implementation (I)

Swap
area

Process virtual address space

"External "
Pager

File
System

Usual VM
Pager

Program A file



Mach implementation (II)

 Mach organizes active parts of virtual address space of each 
process into address ranges

 Each address range can have a different pager
 Executable in file system for code segment
 Swap area for data segment
 Files themselves for mapped files



Linux implementation (I)

 mmap(…)
 Maps files or devices into memory
 Implements demand paging

 File blocks are brought on demand
 Lazy approach

 Can map a portion of a file (offset + number of bytes)



Syntax

 #include <sys/mman.h>
void *mmap(void *addr,

size_t length,
int prot,
int flags,
int fd,
off_t offset);

 Must first open the file!

Protection( rwx)

File descriptor

Start offset



A few options and flags

 Setting addr to NULL lets the system choose the start address of 
the mapped file

 Flag MAP_SHARED makes updates to the mapping visible to all 
processes that map the file

 Flag MAP_PRIVATE keeps these updates private
 Flag MAP_ANONYMOUS along with flag MAP_SHARED creates a 

shared memory segment



Linux implementation (II)

 #include <sys/mman.h>
int msync(void *addr,

size_t length,
int flags);

 Flushes back to disk all changes made in main memory from 
address addr to address 
addr + length – 1

 Many flag options

#include <sys/mman.h>
#include <sys/mman.h>



Discussion

 Solution requires very large address spaces
 Most programs will continue to access files through calls to read() 

and write()
 Function calls instead of system calls
 NO context switches!



A major problem

 Much harder to emulate the UNIX consistency model in a 
distributed file system
 How can we have atomic writes?
 Not a problem for laxer consistency model

(close-to-open consistency)


