
COSC 6360 FIRST MIDTERM SEPTEMBER 22, 2004

This exam is closed book. You can have one sheet (i.e., two pages) of notes.
Please be specific and answer every part of every question.

1. What are the undesirable effects of letting the hand of the Clock page replacement policy move (a)
too fast and (b) too slow ? (2×5 points) What has Berkeley UNIX done about both issues?
(2×5 points)

(a) When the hand moves too fast, the policy invalidates too many page, which
generates too many context switches when user processes access these pages. For
that reason, BSD Unix limits the scanning rate of the hand of its clock policy to
300/scans per second.

(b) When the hand moves too slowly, pages that have not been recently accessed
remain in main memory too long. To speed up the expulsion of these pages, BSD
Unix has added a second hand that follows the first hand at a fixed angle. Now the
first hand clears valid bits and the second hand expels the pages that have not
been accessed by the process after their valid bit had been cleared by the first
hand..

2. Give one example of:

(a) an external pager in the Mach operating system: (5 points)

the file system___

(b) a memory object managed by that external pager: (5 points)

files___

3. How does the Berkeley UNIX Fast File System organizes its i-node table? (5 points) What is the
advantage of this organization? (5 points) (Hint: This question is about the global organization of
the i-node table and not about the contents of individual i-nodes.)

The Fast File System subdivides each disk partition—or file system—into groups of
contiguous cylinders. Rather than having a single i-node table for the whole disk
partition, they distribute it among all cylinder groups so that most files will have their
i-node and their data blocks in the same cylinder group, thus eliminating—or
shortening—disk seeks

4. How many lines will be printed by the following program? (5 points)

main() { fork(); fork(); printf("Done!\n") } _____ 4_ lines

5. Consider a virtual memory system with 64 bit addresses and 8 kilobyte pages. What would be the
best page table organizations to support:

(a) Partial subblocking with a subblocking factor of 2: (5 points for a correct diagram)

VPN
PPN +bitmap
Next Pointer

Each page table entry would occupy ___________3x8 = 24_____ bytes. (5 points)

(b) Complete subblocking with a subblocking factor of 2: (5 points for a correct diagram)

VPN
PPN0
PPN1
Next Pointer

Each page table entry would occupy _____________4x8 = 32____ bytes. (5 points)

6. In conventional shared memory systems, critical sections that consist of a single machine language
instruction do not have to be surrounded by lock/unlock—or request/release—pairs. Why? (5 points)
Is this still true with Munin? (5 points) Justify your answer by considering the case of a critical
section reading the value of a single shared variable and storing it into a local variable. (10 points)

In a conventional shared memory system, there is no need to surround single
instructions by lock/unlock pairs because single instructions are normally
uninterruptible. In Munin, the pair request/release plays a double role:

(a) It provides mutual exclusion

(b) It ensures that the contents of the virtual shared memory are made consistent at
the time the processor issues a request and that the new values are propagated
when the process issues the matching release.

Omitting the request/release pair around a critical section consisting of a single
instruction is thus dangerous as we would not have any guarantee that the instruction
will access the most current version of the data in the distributed shared memory.

7. What characterizes a self-tuning cache replacement policy? (5 points) Which feature(s) of ARC
make that policy self-tuning? (10 points) (Hint: You have more than enough space to answer the
question)

A self-tuning cache replacement policy has no parameters that can be set by the
system administrator and can affect the performance of the policy. ARC is self-tuning
because it has no parameter than can be set or modified by the user.

