
NAME: ______________________________ (FIRST NAME FIRST) SCORE: _______

 1 T: ______

COSC 4330 SECOND MIDTERM OCTOBER 30, 2007

This exam is closed book. You can have one page of notes. UH expels cheaters.

1. Questions with short answers: (4×5 points)

a) How do you pass a linked list to a remote procedure?

By packing into an array and passing it by value.

b) What is the major disadvantage of busy waits?

They waste CPU cycles and cause many context switches.

c) What is the difference between blocking sends and non-blocking sends?

A blocking send does not return until the message is received by the destination
process while a non-blocking send returns immediately..

d) What is the major advantage of idempotent procedures?

We do not have to prevent multiple executions of an idempotent procedure as they
will always have the same effect as a single execution of the procedure.

e) What is the major disadvantage of the at-most-once semantics for remote procedure calls?

It does not prevent partial executions of the remote procedure.

f) Name an application that should use streams rather than datagrams and explain why?

Any web browser, any file transfer application.

2. What is wrong with the following solution to the mutual exclusion problem? (10 points)

// process ids must be 0 or 1
shared int inside[2] = {1, 1};

void enter_region(int pid) {
 int other = 1- pid;
 while (inside[other] == 2);
 inside[pid] = 2;
} // enter_region

void leave_region(int pid) {
 inside[pid] = 1;
} /}// leave_region

Mark the correct answer(s):

 It does not guarantee mutual exclusion
under all circumstances.

O It will sometimes prevent a process to
enter the critical section when no other
process is inside,

O It will occasion deadlocks.

COSC 4330 SECOND MIDTERM NAME: _______________

 2 T: ______

3. Consider the following System V Release 4 scheduler where the question marks represent new
priority levels: (2×10 points)

#ts_quantum ts_tqexp ts_slpret ts_maxwait ts_lwait LEVEL
 800 ? ? 16000 ? # 0
 400 ? ? 8000 ? # 1
 200 ? ? 4000 ? # 2
 100 ? ? 2000 ? # 3

a) What is the best value for the ts_tqexp parameter at priority level 1 and why?

0 since we should lower the priority of processes that exceeded their time slice.

b) What is the best value for the ts_slpret parameter at priority level 2 and why?

3 since we should increase the priority of processes that have performed a system
call.

4. For each of the statements below, indicate in one sentence whether the statement is true or false
(2 points), and why (3 points).

a) Windows NT dynamically adjusts the priorities of real-time processes to ensure that these
processes always complete on time.

FALSE, Windows NT uses fixed priorities for all real-time processes.

b) In a RPC, one of the tasks of the user stub is to exchange messages with the user program.

FALSE, the user stub exchanges messages with the server stub.

c) Peterson’s algorithm assumes the existence of a test-and-set instruction.

FALSE, Peterson’s algorithm makes no assumptions about the computer instruction
set.

d) You can simulate non-blocking receives using blocking receives and busy waits.

FALSE, you cannot simulate non-blocking primitives using blocking primitives.

COSC 4330 SECOND MIDTERM NAME: _______________

 3 T: ______

5. A diner can seat a maximum of 40 customers. Complete the following code fragments to ensure (a)
that the diner will never contain more than 40 customers and (b) that customers arriving together will
be seated together. (Hint: Your solution will seat all groups of arriving customers in strict FCFS
order.) (20 points).

semaphore seats = _40__;

semaphore access = __1__;

arrive (int ncustomers) {

 int i;

 P(&access) __;

 for (i = 0; i < ncustomers ; i++)

 P(&seats) __;

 V(&access) __;

} // arrive

leave(int ncustomers) {

 int i;

 for (i = 0; i < ncustomers ; i++)

 V(&seats) __;

} // leave

