
NAME:  ______________________________ (FIRST NAME FIRST)   SCORE:  _______ 

 1 T: ______ 

COSC 4330 SECOND MIDTERM  NOVEMBER 3, 2008 
This exam is closed book.  You can have one page of notes.   UH expels cheaters. 

1. Questions with short answers:  (6×5 points) 

a) How do you pass a linked list  to a remote procedure? 

You store the linked list into an array and pass it to the remote server along with 
instructions describing how to rebuild the list. 

b) What is the major disadvantage of the round-robin scheduling policy? 

The round-robin scheduling policy does not discriminate between interactive 
processes, which need quick access to the CPU, and CPU-bound processes, which 
just need a lot of CPU time.  In order to provide quick access to the CPU for all 
processes, it tends to use small time slices that result in too many context 
switches. 

c) What is the difference between blocking sends and non-blocking sends? 

A blocking send does not return until the receiving process has actually received 
the message. 

A non-blocking send returns as soon as the message has been accepted for later 
delivery by the OS. 

d) What happens when a process executes a signal() system call? 

When a process executes a signal() system call, it sets up a procedure to follow the 
next time it receives a signal. 

e) What is the major disadvantage of the at-most-once semantics for remote procedure calls? 

It does not prevent partial executions of remote procedures. 

f) What is the main advantage of streams over datagrams? 

Streams ensure that all messages will arrive in the order they have been sent, 
without errors and without duplicates. 



COSC 4330 SECOND MIDTERM NAME:  _______________ 

 2 T: ______ 

2. Which of the following statements apply to (a) kernel-supported threads, (b) user level threads and (c) 
all threads?  (5 points per correct line) 

 Kernel-
supported 

User-
level 

Both 
types 

They do not require kernel modifications. _____ __X__ _____ 

They share the address space of their parent. _____ _____ __X__ 

They allow the kernel to allocate several processors to 
the threads sharing an address space. 

__X__ _____ _____ 

Switching between threads in the same address space 
requires two context switches 

__X__ _____ _____ 

3. How processes will be required by the execution of the following program?  (5 points) 
main(){ 
 fork(); 
 printf(“Hi!\n”); 
 fork(); 
 printf(“How are you?\n”); 
} // main 

 Executing the program will require exactly   __4__   processes. 

4. When should the System V Release 4 scheduler:  (3×5 points) 

a) Decrease the priority of a process? 

Each time a process returns to the ready queue having exhausted its time slice. 

b) Increase that priority? 

 Each time a process returns to the ready queue from the waiting state. 

 Whenever a process has been in the ready queue for more than ts_maxwait 
and not getting any CPU time. 



COSC 4330 SECOND MIDTERM NAME:  _______________ 

 3 T: ______ 

5. Complete the following fragment of code in such a manner that the standard output of the process will 
be  redirected to the pipe thispipe.  (2×5 points) 

int thispipe[2]; 

pipe(thispipe); 

close(1);                                            

dup(thispipe[1]);                                

close(thispipe[0]);close(thispipe[1]); 

6. Why is fork() a very expensive system call ? (5 points)  Was this always true? ( 5 points) 

Fork() is a very expensive system call because it copies into the child address space the 
entire contents of its parent address space. 

This cost was tolerable as long as UNIX was running on 16-bit architectures because 
these architectures limited the size of process address space to 64 KB.  The switch to 
32-bit architectures has changed that. 

7. How can you simulate a blocking send  using only non-blocking sends and non-blocking receives? 
(10 points) 

(Simulating a blocking send using a non-blocking send means that the sender process 
must wait until the destination process has acknowledged the message.  Since we are to 
use non-blocking receives, we must use busy waits) 

Sender side: 
// sends message 
nbsend(destination, message, nb1); 
// waits for reply 
while (nbreceive(destination, reply, &nb2) == NO_MSG); 

Destination side: 
// waits for message 
while (nbreceive(sender, message, &nb1) == NO_MSG); 
// sends reply 
nbsend(sender, reply, nb2); 

 


