This exam is **closed book**. You can have **one sheet** (i.e., **two pages**) of notes. Please be **specific** and answer **every part** of every question.

•	Consider a RAID-5 system with four data blocks per stripe $(b_0, b_1, b_2 \text{ and } b_3)$ and one parity block p .
	(a) How much of the total disk space is used by the parity blocks? (5 points)
	20 percent
	(b) What is the minimum number of disk drives required to implement this organization? (5 points)
	5 drives
	(c) What is the <i>most efficient</i> way to update block b_3 ? (10 points)
	Read block(s) old block b ₃ and old parity block p
	Compute new parity block = old block b_3 XOR new block b_3 XOR old parity block p
	Write new block b ₃ and new parity block p
	· · ·

- 2. What is the major disadvantage of *logical clocks* over *physical clocks*? (10 points)
- **3.** What are *replays*? (5 points) What can they be used for? (5 points) What does Kerberos to allow servers to distinguish them from authentic messages? (10 points)
- **4.** Why are *guarded commands* an essential part of CSP's design? (5 points) Why do UNIX IPC packages not require them? (5 points)
- **5.** What is the function of Totem's guaranteed vector messages? (10 points) (*Hint:* explain what would happen without them.)
- 6. Give two techniques that could be used by a mischievous extension to circumvent the measures taken by Nooks to protect the kernel. (2×5 points)
- 7. Spring treats the thread issuing a cross-domain call and all downstream threads as a single *scheduling entity* called a *shuttle*. Why does it not merge them instead into a single thread within the calling domain? (2×5 points) (*Hint: I expect two reasons.*)
- **8.** What is the function of a *software abstraction* in xOK? (5 points)
- **9.** What is the performance advantage of using a *type-safe programming language* in your kernel rather than relying on *dynamic checks*? (5 points) (*Hint: The answer is rather short.*)