
Solutions for the
Second Quiz

COSC 6360
Fall 2017

First question

 What characterizes a self-tuning cache
replacement policy?

 Which feature(s) of the ARC cache replacement
make that policy self-tuning?

First question

 What characterizes a self-tuning cache
replacement policy?

 It does not require any workload-
dependent adjustments.

 Which feature(s) of the ARC cache replacement
make that policy self-tuning?

 It has no user-tunable parameter.

Alternate first question

 What characterizes a scan-resistant cache
replacement policy?

 Which feature(s) of the ARC cache replacement
make that policy scan-resistant?

Alternate first question

 What characterizes a scan-resistant cache
replacement policy?

Pages that are only accessed once are
expelled faster than other pages.

 Which feature(s) of the ARC cache replacement
make that policy scan-resistant?

ARC maintains a separate list of pages
that have been accessed once.

Second question

 What problem do Corey kernel cores address?

 How do they solve that problem?

Second question

 What problem do Corey kernel cores address?
 In most OSes, system calls are executed

on the core of the invoking process
 Bad idea if the system call needs to

access large shared data structure
 How do they solve that problem?
 Kernel cores let applications dedicate

cores to run specific kernel functions
 Avoids inter-core contention over the

data these functions access

Alternate second question

 What problem do Corey address ranges try to
solve?

 How do they solve that problem?

Alternate second question

 What problem do Corey address ranges try to
solve?

Current solutions do not let the cores of
multicore applications access both shared
and private data in an efficient fashion.

 How do they solve that problem?

They let applications define both shared
and private address ranges in their
address spaces.

Third question

 What must happen before Proof Carrying Code
becomes widely used?

Third question

 What must happen before Proof Carrying Code
becomes widely used?

We must find a cost-effective way to
construct safety proofs for non-trivial
extensions

Fourth question

 Consider a hypothetical 8-way associative L2
TLB with 2,048 entries

 What would be its coverage for a page size of 4
kilobytes?

Fourth question

 Consider a hypothetical 8-way associative L2
TLB with 2,048 entries

 What would be its coverage for a page size of 4
kilobytes?

2K×4KB = 8MB

Alternate fourth question

 Consider a hypothetical 4-way associative L2
TLB with 1,024 entries

 What would be its coverage for a page size of 4
kilobytes?

Alternate fourth question

 Consider a hypothetical 4-way associative L2
TLB with 1,024 entries

 What would be its coverage for a page size of 4
kilobytes?

1K×4KB = 4MB

Fifth question

 What do Navarro et al. propose to do whenever
a process attempts to modify a superpage?

 Why?

Fifth question

 What do Navarro et al. propose to do whenever
a process attempts to modify a superpage?

Whenever a process attempts to modify a
superpage, that superpage is demoted and
replaced by its constituent base pages

 Why?

To avoid having to flush back the whole
superpage when it will be expelled from
main memory

Sixth question

 How does Nooks recover from an extension
failure?

 What is the main limitation of this approach?

Sixth question

 How does Nooks recover from an extension
failure?

 It restarts the extension.

 What is the main limitation of this approach?

 It does not work for all extensions.

Seventh question

 What is the major performance penalty occurring
when Nooks crosses a lightweight protection
domain boundary?

Seventh question

 What is the major performance penalty occurring
when Nooks crosses a lightweight protection
domain boundary?

Crossing protection boundaries requires
switching the kernel page table, which
results in a flush of the current TLB (and
an avalanche of TLB misses).

