
Solutions for the
Second Quiz

COSC 6360
Fall 2017

First question

 What characterizes a self-tuning cache
replacement policy?



 Which feature(s) of the ARC cache replacement
make that policy self-tuning?



First question

 What characterizes a self-tuning cache
replacement policy?

 It does not require any workload-
dependent adjustments.

 Which feature(s) of the ARC cache replacement
make that policy self-tuning?

 It has no user-tunable parameter.

Alternate first question

 What characterizes a scan-resistant cache
replacement policy?



 Which feature(s) of the ARC cache replacement
make that policy scan-resistant?



Alternate first question

 What characterizes a scan-resistant cache
replacement policy?

Pages that are only accessed once are
expelled faster than other pages.

 Which feature(s) of the ARC cache replacement
make that policy scan-resistant?

ARC maintains a separate list of pages
that have been accessed once.

Second question

 What problem do Corey kernel cores address?



 How do they solve that problem?



Second question

 What problem do Corey kernel cores address?
 In most OSes, system calls are executed

on the core of the invoking process
 Bad idea if the system call needs to

access large shared data structure
 How do they solve that problem?
 Kernel cores let applications dedicate

cores to run specific kernel functions
 Avoids inter-core contention over the

data these functions access

Alternate second question

 What problem do Corey address ranges try to
solve?



 How do they solve that problem?



Alternate second question

 What problem do Corey address ranges try to
solve?

Current solutions do not let the cores of
multicore applications access both shared
and private data in an efficient fashion.

 How do they solve that problem?

They let applications define both shared
and private address ranges in their
address spaces.

Third question

 What must happen before Proof Carrying Code
becomes widely used?



Third question

 What must happen before Proof Carrying Code
becomes widely used?

We must find a cost-effective way to
construct safety proofs for non-trivial
extensions

Fourth question

 Consider a hypothetical 8-way associative L2
TLB with 2,048 entries

 What would be its coverage for a page size of 4
kilobytes?



Fourth question

 Consider a hypothetical 8-way associative L2
TLB with 2,048 entries

 What would be its coverage for a page size of 4
kilobytes?

2K×4KB = 8MB

Alternate fourth question

 Consider a hypothetical 4-way associative L2
TLB with 1,024 entries

 What would be its coverage for a page size of 4
kilobytes?



Alternate fourth question

 Consider a hypothetical 4-way associative L2
TLB with 1,024 entries

 What would be its coverage for a page size of 4
kilobytes?

1K×4KB = 4MB

Fifth question

 What do Navarro et al. propose to do whenever
a process attempts to modify a superpage?



 Why?



Fifth question

 What do Navarro et al. propose to do whenever
a process attempts to modify a superpage?

Whenever a process attempts to modify a
superpage, that superpage is demoted and
replaced by its constituent base pages

 Why?

To avoid having to flush back the whole
superpage when it will be expelled from
main memory

Sixth question

 How does Nooks recover from an extension
failure?



 What is the main limitation of this approach?



Sixth question

 How does Nooks recover from an extension
failure?

 It restarts the extension.

 What is the main limitation of this approach?

 It does not work for all extensions.

Seventh question

 What is the major performance penalty occurring
when Nooks crosses a lightweight protection
domain boundary?

Seventh question

 What is the major performance penalty occurring
when Nooks crosses a lightweight protection
domain boundary?

Crossing protection boundaries requires
switching the kernel page table, which
results in a flush of the current TLB (and
an avalanche of TLB misses).

