SECOND QUIZ ANSWERS

COSC 6360 October 1, 2018

WHITE QUIZ

First question

- How does Nooks recover from an extension failure?
- What is the *main limitation* of this approach?

First question

- How does Nooks recover from an extension failure?
- What is the *main limitation* of this approach?
 - Nooks recovers from an extension failure by killing and restarting the failing extension.
 - □ The approach des not work for all extensions.

Second question

Give one reason for the relatively high overhead of Nooks.

Second question

- Give one reason for the relatively high overhead of Nooks.
 - □ Each switch of lightweight protection domains involve fetching a new page table and results in a TLB flush.

Third question

How do mapped files reduce the number of context switches during file accesses?

Third question

- How do mapped files reduce the number of context switches during file accesses?
 - □ They bring file blocks directly into the address space of the process accessing them.
 - □ They eliminate the context switches required to transfer data between the system I/O buffer and the process space.

Fourth question

- In Mach, what are the inheritance attributes of
 - a) The *code segment* of a process:
 - b) Any of its *mapped files*:

Fourth question

- In Mach, what are the inheritance attributes of
 - a) The *code segment* of a process: *Shared*
 - b) Any of its *mapped files*: Shared

Fifth question

Why TLB sizes have remained small while memory sizes have been exploding?

Fifth question

- Why TLB sizes have remained small while memory sizes have been exploding?
 - □ Because larger TLBs would be slower and TLBs must be very fast

Sixth question

- Consider a virtual memory system with 4 KB pages, 24 GB of RAM and a TLB with 512 entries.
- What would be the *coverage* of this TLB?

Sixth question

- Consider a virtual memory system with 4 KB pages, 24 GB of RAM and a TLB with 512 entries.
- What would be the *coverage* of this TLB?

 \Box 512×4KB = 2MB

Seventh question

- How do Navarro et al. propose to handle dirty superpages?
- Why?

Seventh question

- How do Navarro et al. propose to handle dirty superpages?
- Why?
- They propose to disband superpages the first time one of their base pages gets modified.
- Otherwise we would have to save the whole superpage when it gets expelled from main memory

Eighth question

- What can cause false sharing in a multicore system
- How can we solve the problem?

Eighth question

- What can cause false sharing in a multicore system
- How can we solve the problem?
- False sharing occurs when two distinct data items appear in the same cache line, they are accessed by two different threads and one of them is frequently updated.
- We should move one of the two items to a different address.

YELLOW QUIZ

First question

Why TLB sizes have remained small while memory sizes have been exploding?

First question

- Why TLB sizes have remained small while memory sizes have been exploding?
 - □ Because larger TLBs would be slower and TLBs must be very fast

Second question

- Consider a virtual memory system with 4 KB pages, 16 GB of RAM and a TLB with 256 entries.
- What would be the *coverage* of this TLB?

Second question

- Consider a virtual memory system with 4 KB pages, 16 GB of RAM and a TLB with 256 entries.
- What would be the coverage of this TLB?

 $\square 256 \times 4KB = 1MB$

Third question

- How do Navarro et al. propose to handle dirty superpages?
- Why?

Third question

- How do Navarro et al. propose to handle dirty superpages?
- Why?
- They propose to disband superpages the first time one of their base pages gets modified.
- Otherwise we would have to save the whole superpage when it gets expelled from main memory

Fourth question

How do mapped files reduce the number of context switches during file accesses?

Fourth question

- How do mapped files reduce the number of context switches during file accesses?
 - □ They bring file blocks directly into the address space of the process accessing them.
 - □ They eliminate the context switches required to transfer data between the system I/O buffer and the process space.

Fifth question

In Mach what are the two possible inheritance attributes for the data segment of a process?

Fifth question

In Mach what are the two possible inheritance attributes for the data segment of a process?

- a) Copy
- b) Share

Sixth question

- What can cause false sharing in a multicore system
- How can we solve the problem?

Sixth question

- What can cause false sharing in a multicore system
- How can we solve the problem?
- False sharing occurs when two distinct data items appear in the same cache line, they are accessed by two different threads and one of them is frequently updated.
- We should move one of the two items to a different address.

Seventh question

- How does Nooks recover from an extension failure?
- What is the *main limitation* of this approach?

Seventh question

- How does Nooks recover from an extension failure?
- What is the *main limitation* of this approach?
 - □ Nooks recovers from an extension failure by killing and restarting the failing extension.
 - □ The approach des not work for all extensions.

Eighth question

Why does Nooks XPC mechanism use calls by value and result?

Eighth question

- Why does Nooks XPC mechanism use calls by value and result?
 - □ The call by value and result delays updates until the procedure has completed and allows the Nooks XPC mechanism to check their validity.