SECOND QUIZ ANSWERS

COSC 6360 September 30, 2019

First question

What should be the inheritance attribute of a mapped file?

First question

What should be the inheritance attribute of a mapped file?

□ Shared

Second question

How can Mach differentiate between mapped files that are readonly and those that are writable?

Second question

How can Mach differentiate between mapped files that are readonly and those that are writable?

Through the protection attribute of the address range that contains the mapped file.

Third question

A computer has 8GB of RAM, 4KB pages and a relatively big TLB with 1,024 entries. What is the coverage of this TLB in megabytes?

Third question

A computer has 8GB of RAM, 4KB pages and a relatively big TLB with 1,024 entries. What is the coverage of this TLB in megabytes?

□1,024x4KB = 4MB

Fourth question

How can we check which base pages of a superpage are still active?

Fourth question

How can we check which base pages of a superpage are still active?

□ By performing a speculative demotion of the superpage.

Consider a sloppy counter consisting of two local counters, countA and countB, and a global counter global_count. Assuming that the current values of the three counters are:

 \Box count_A = 3 count_B = 0 global_count = 6

What would be the values of the three counters after core A increments the value of the sloppy counter by one?

 $\Box count_A = _ count_B = _ global_count = _$

Consider a sloppy counter consisting of two local counters, countA and countB, and a global counter global_count. Assuming that the current values of the three counters are:

 \Box count_A = 3 count_B = 0 global_count = 6

What would be the values of the three counters after core A increments the value of the sloppy counter by one?

 $\Box count_A = 2$ count_B = 0 global_count = 6

Core A can do a local update.

Consider a sloppy counter consisting of two local counters, count_A and count_B, and a global counter global_count. Assuming that the current values of the three counters are:

 $\Box count_A = 0$ count_B = 2 global_count = 9

What would be the values of the three counters after core B then increments the value of the sloppy counter by one?

 $\Box count_A = _ count_B = _ global_count = _$

Consider a sloppy counter consisting of two local counters, count_A and count_B, and a global counter global_count. Assuming that the current values of the three counters are:

 \Box count_A = 2 count_B = 0 global_count = 6

What would be the values of the three counters after core B then increments the value of the sloppy counter by one?

 \Box count_A = 2 count_B = 0 global_count = 9

Core B must update the global counter.

Sixth question

What is the main conclusion that Boyd-Wickizer et al. draw from their analysis of Linux scalability to many cores?

Sixth question

What is the main conclusion that Boyd-Wickizer et al. draw from their analysis of Linux scalability to many cores?

[T]here is no scalability reason to give up on traditional operating system organizations just yet.

Seventh question

- A system of physical clocks consists of two clocks, namely, one that is slow and loses 3 minutes every hour and another that is fast and advances by 3 minutes every hour.
- Assuming that the clocks are managed by Lamport's physical clock protocol, what will be the time marked by each clock at <u>3:00</u> <u>PM</u> given that:
 - □ Both clocks indicated the correct time at noon;
 - □ The processors on which the clocks reside continuously exchange messages between themselves; and
 - □ The message transmission delays are negligible.

Seventh question

Actual time	Fast clock	Slow clock
12:00pm	12:00pm	12:00pm
1:00pm	1:03pm	1:03pm
2:00pm	2:06pm	2:06pm
3:00pm	<u>3:09pm</u>	<u>3:09pm</u>

As the two process continuously exchange messages, the slow clock is constantly updated by the fast clock.

Eighth question

What is the best explanation for the relatively *high overhead* of Nooks?

Eighth question

What is the best explanation for the relatively *high overhead* of Nooks?

The so-called lightweight context switches between the kernel address space and the extension address space result in TLB flushes.

Green quiz

First question

How can Mach differentiate between mapped files that are readonly and those that are writable?

First question

How can Mach differentiate between mapped files that are readonly and those that are writable?

Through the protection attribute of the address range that contains the mapped file.

Second question

• What should be the inheritance attribute of a code segment?

Second question

• What should be the inheritance attribute of a code segment?

□ Shared

Third question

A computer has 8GB of RAM, 4KB pages and a TLB with 512 entries. What is the coverage of this TLB in megabytes?

Third question

A computer has 8GB of RAM, 4KB pages and a TLB with 512 entries. What is the coverage of this TLB in megabytes?

□ 512x4KB = 2MB

Fourth question

How can we check which base pages of a superpage are still active?

Fourth question

How can we check which base pages of a superpage are still active?

□ By performing a speculative demotion of the superpage.

Consider a sloppy counter consisting of two local counters, countA and countB, and a global counter global_count. Assuming that the current values of the three counters are:

 \Box count_A = 0 count_B = 2 global_count = 8

What would be the values of the three counters after core A increments the value of the sloppy counter by one?

 $\Box count_A = _ count_B = _ global_count = _$

Consider a sloppy counter consisting of two local counters, countA and countB, and a global counter global_count. Assuming that the current values of the three counters are:

 \Box count_A = 0 count_B = 2 global_count = 8

What would be the values of the three counters after core A increments the value of the sloppy counter by one?

 $\Box count_A = 0$ count_B = 2 global_count = 9

Core A must update the global counter

Consider a sloppy counter consisting of two local counters, count_A and count_B, and a global counter global_count. Assuming that the current values of the three counters are:

 $\Box count_A = 0$ count_B = 2 global_count = 9

What would be the values of the three counters after core B then increments the value of the sloppy counter by one?

 $\Box count_A = _ count_B = _ global_count = _$

Consider a sloppy counter consisting of two local counters, count_A and count_B, and a global counter global_count. Assuming that the current values of the three counters are:

 $\Box count_A = 0$ count_B = 2 global_count = 9

What would be the values of the three counters after core B then increments the value of the sloppy counter by one?

 \Box count_A = 0 count_B = 1 global_count = 9

Core B can do a local update

Sixth question

What is the main conclusion that Boyd-Wickizer et al. draw from their analysis of Linux scalability to many cores?

[T]here is no scalability reason to give up on traditional operating system organizations just yet.

Sixth question

What is the main conclusion that Boyd-Wickizer et al. draw from their analysis of Linux scalability to many cores?

Seventh question

- A system of physical clocks consists of two clocks, namely, one that is slow and loses 5 minutes every hour and another that is fast and advances by 5 minutes every hour.
- Assuming that the clocks are managed by Lamport's physical clock protocol, what will be the time marked by each clock at <u>3:00</u> <u>PM</u> given that:
 - □ Both clocks indicated the correct time at noon;
 - □ The processors on which the clocks reside continuously exchange messages between themselves; and
 - □ The message transmission delays are negligible.

Seventh question

Actual time	Fast clock	Slow clock
12:00pm	12:00pm	12:00pm
1:00pm	1:05pm	1:05pm
2:00pm	2:10pm	2:10pm
3:00pm	<u>3:15pm</u>	<u>3:15pm</u>

As the two process continuously exchange messages, the slow clock is constantly updated by the fast clock.

Eighth question

What is the best explanation for the relatively *high overhead* of Nooks?

The so-called lightweight context switches between the kernel address space and the extension address space result in TLB flushes.

Eighth question

What is the best explanation for the relatively *high overhead* of Nooks?

The so-called lightweight context switches between the kernel address space and the extension address space result in TLB flushes.