Solutions for the Second Quiz

COSC 6360
Spring 2014

First question

- According to Navarro et al., what is the purpose of speculative demotion of superpages?

Answer

- According to Navarro et al., what is the purpose of speculative demotion of superpages?
\square To find out if the superpage is still being actively used in its entirety.
\square Done at fixed intervals

Second question

- Consider a system with 4 GB of RAM, a 1 MB L3 cache, and 4 KB pages. What is the minimum TLB size that could prevent most TLB misses for data already in the cache? (10 points)

Answer

- Consider a system with 4 GB of RAM, an L3 cache, and 4 KB pages. What is the minimum TLB size that could prevent most TLB misses for data already in the cache?
\square The TLB should cover the whole L3 cache:
- If cache size is 1 MB :
- $1 \mathrm{MB} / 4 \mathrm{~KB}=256$ entries
- If cache size is 2 MB :
$\square \quad 2 \mathrm{MB} / 4 \mathrm{~KB}=512$ entries

Third question

In the ARC cache replacement policy, which events result in an update of target_T1?
(2×10 points)
\square Target_T1 will increase when
\square Target_T1 will decrease when

Answer

- In the ARC cache replacement policy, which events result in an update of target_T1? (2×10 points)
\square Target_T1 will increase when a page fault brings in the cache a page in B1, the bottom part of L1
\square Target_T1 will decrease when a page fault brings in the cache a page in B2, the bottom part of L2

Fourth question

- What is the main limitation of the Nooks extension recovery mechanism?

Answer

- What is the main limitation of the Nooks extension recovery mechanism?
\square It does not work for all extensions:
- Some extensions cannot be safely killed and restarted

Fifth question

- Under which conditions do MCS locks perform best? Why?

Answer

- Under which conditions do MCS locks perform best? Why?
\square MCS locks perform best at high contention rates because each contending core spins on a separate location.
- Result is no cache coherence broadcasts

Sixth question

- A system of physical clocks consists of two clocks, namely, one that is fast and advances by x minutes every hour and another that neither fast nor slow. Assuming that the clocks are managed by Lamport's physical clock protocol, what will be the time marked by each clock at 4 pm given that:
\square Both clocks indicated the correct time at noon;
$\square \quad$ The processors on which the clocks resides continuously exchanged messages between themselves from noon to two pm ; and
\square Message transmission delays are negligible.

Answer for $x=4$ minutes

Actual time	Fast clock	Regular clock
Noon	$12: 00 \mathrm{pm}$	$12: 00 \mathrm{pm}$
1 pm	$1: 04 \mathrm{pm}$	$1: 04 \mathrm{pm}$
2 pm	$2: 08 \mathrm{pm}$	$2: 08 \mathrm{pm}$
3 pm	$3: 12 \mathrm{pm}$	$3: 08 \mathrm{pm}$
$\mathbf{4} \mathbf{~ p m}$	$\mathbf{4 : 1 6 ~ p m}$	$\mathbf{4 : 0 8} \mathrm{pm}$

Answer for $x=5$ minutes

Actual time	Fast clock	Regular clock
Noon	$12: 00 \mathrm{pm}$	$12: 00 \mathrm{pm}$
1 pm	$1: 05 \mathrm{pm}$	$1: 05 \mathrm{pm}$
2 pm	$2: 10 \mathrm{pm}$	$2: 10 \mathrm{pm}$
3 pm	$3: 15 \mathrm{pm}$	$3: 10 \mathrm{pm}$
$\mathbf{4 ~ p m}$	$4: 20 \mathrm{pm}$	$\mathbf{4 : 1 0 ~ p m}$

