Solutions to the Third COSC 6360 Quiz for Fall 2012

> Jehan-François Pâris jfparis@uh.edu

PCC

 In PCC, which entity is responsible for defining the set of *safety rules* that will guarantee the safety of an extension? (5 points)

The consumer

Nooks

 Why do Nooks wrappers replace all *calls by reference* by *calls by value and return*? (10 points)

To delay kernel memory changes until the procedure terminates

<u>ALSO</u>

Because the extension cannot modify the kernel address space outside its lightweight protection domain

Nooks again

Give one reason for the *relatively high overhead* of Nooks (10 points)

The TLB is flushed each time the kernel switches between protection domain

Must be done each time the page map changes

Lamport's Clocks

- A system of physical clocks consists of two clocks,
 - One that is fast and gains two minutes every hour
 - □ Another that is neither fast nor slow.

Lamport's Clocks

Assuming that the clocks are managed by Lamport's physical clock protocol, what will be the time marked by each clock at 3 pm given that:

- Both clocks indicated the correct time at noon;
- The processors on which the clocks resides stopped exchanging messages at 1 pm; and
- Message transmission delays are negligible.
 (2×5 points)

Actual Time	Fast Clock	Correct Clock
12:00 pm	12:00 pm	12:00 pm
1:00 pm	1:02 pm	
2:00 pm		
3:00 pm		

Actual Time	Fast Clock	Correct Clock
12:00 pm	12:00 pm	12:00 pm
1:00 pm	1:02 pm	1:02 pm
2:00 pm	2:04 pm	
3:00 pm		

Actual Time	Fast Clock	Correct Clock
12:00 pm	12:00 pm	12:00 pm
1:00 pm	1:02 pm	1:02 pm
2:00 pm	2:04 pm	2:02 pm
3:00 pm		

Actual Time	Fast Clock	Correct Clock
12:00 pm	12:00 pm	12:00 pm
1:00 pm	1:02 pm	1:02 pm
2:00 pm	2:04 pm	2:02 pm
3:00 pm	3:06 pm	3:02 pm

BitTorrent

- What is the purpose of the strict priority rule for BitTorrent peers? (10 points)
- When does it apply? (5 points)

In order to get complete pieces as quickly as possible

Always

□ It is the random first piece rule that only applies to new peers.

If you do not believe it

2.4.1 Strict Priority

BitTorrent's first policy for piece selection is that once a single sub-piece has been requested, the remaining sub-pieces from that particular piece are requested before sub-pieces from any other piece. This does a good job of getting complete pieces as quickly as possible.

Lamport's clocks again

What is the major disadvantage of *logical clocks* over *physical clocks*? (10 points)

Logical clocks do not preserve the causality relation in systems where processes can exchange information through external events

Kerberos

Assume that you are working on a new version of Kerberos that would encrypt all communications between the client and any service it is connected to. What would you use as a session key? (10 points)

The shared secret session key K_{c.s} Generated by TGS Communicated to the client and the service

Encryption

- Bob knows the public key of Alice K_{P,A} and knows that she knows his public key K_{P,B}. He sends her the following message:
 - "I am Bob. Please communicate with me using secret key 234ff08a79dce"

and encrypts it with Alice public key. What did he do wrong? (10 points)

- He did not sign it with is secret key K_{P,B}
- Anyone else could have sent the message

SSH

- What should we try to know about a server before connecting to it through SSH? (10 points)
- What could happen otherwise?
 (10 points for a brief explanation)

The public key of the server

Otherwise any intruder could masquerade as the server by sending us a fake public key

Masquerading with the true public key will result in little gain as long as the intruder does not know the secret key of the server