THIRD QUIZ ANSWERS

COSC 6360 October 1, 2018

WHITE QUIZ

- A system of physical clocks consists of two clocks, namely, one that is fast and gains two minutes every hour and another that slow and loses two minutes every hour.
- Assuming that the clocks are managed by Lamport's physical clock protocol, what will be the time marked by each clock at 3 pm given that:
 - □ Both clocks indicated the correct time at noon;
 - □ The processor on which the fast clock resides received at 1pm a message from the other processor;
 - □ No other messages were exchanged between the two processors; and
 - □ Message transmission delays are negligible.

Time	Fast clock	Slow clock
12 pm	12 pm	12 pm
1 pm		
2 pm		
3 pm		

Time	Fast clock	Slow clock
12 pm	12 pm	12 pm
1 pm	1:02 pm	12:58 pm
2 pm		
3 pm		

Message does not affect the fast clock

Time	Fast clock	Slow clock
12 pm	12 pm	12 pm
1 pm	1:02 pm	12:58 pm
2 pm	2:04 pm	1:56 pm
3 pm	3:06 pm	2:54 pm

Second question

Under which conditions can distributed systems be both highly available and fully consistent?

Second question

Under which conditions can distributed systems be both highly available and fully consistent?

□ In the absence of network partitions.

Third question

What does Raft do to minimize the likelihood that leader elections end with a split vote?

Third question

- What does Raft do to minimize the likelihood that leader elections end with a split vote?
 - □ Raft uses randomized election timeouts to increase the chances that a single follower will detect the loss of the leader before the others.

Fourth question

■ What is the purpose of the SSH *server key*?

Fourth question

- What is the purpose of the SSH server key?
 - □ The server key was introduced to make decrypting recorded historic traffic impossible when the host key becomes compromised
 - As it is changed every hour, the intruder can only decrypt one hour of traffic.

Fifth question

Why is the BitTorrent chunk selection policy poorly suited to streaming applications?

Fifth question

- Why is the BitTorrent chunk selection policy poorly suited to streaming applications
 - □ The BitTorrent chunk selection policy makes downloaders select the rarest chunks without regard to any timing constraints.

Sixth question

- Consider a RAID-5 array that has four data blocks, namely, d_0 , d_1 , d_2 , and d_3 , and one parity block q per stripe.
 - What fraction of disk space is occupied by parity information?
 - □____ percent

Sixth question

- Consider a RAID-5 array that has four data blocks, namely, d_0 , d_1 , d_2 , and d_3 , and one parity block q per stripe.
 - What fraction of disk space is occupied by parity information?

■20 percent

м

Sixth question

- Consider a RAID-5 array that has four data blocks, namely, d_0 , d_1 , d_2 , and d_3 , and one parity block q per stripe.
 - □ Assuming that block d_1 suddenly becomes unavailable, how could you reconstruct its contents?

 $\mathbf{d}_1 = \underline{\hspace{1cm}}$

Sixth question

- Consider a RAID-5 array that has four data blocks, namely, d_0 , d_1 , d_2 , and d_3 , and one parity block q per stripe.
 - □ Assuming that block d_1 suddenly becomes unavailable, how could you reconstruct its contents?

 $d_1 = d_0 XOR d_2 XOR d_3 XOR q$

Seventh question

- Over the last ten years, many corporations have replaced their RAID level 5 disk arrays by RAID level 6 arrays even when handling double disk failures was not considered a major issue.
- Can you explain this paradox?

Seventh question

- Over the last ten years, many corporations have replaced their RAID level 5 disk arrays by RAID level 6 arrays even when handling double disk failures was not considered a major issue.
- Can you explain this paradox?
 - □ Because RAID level 5 fails to protect data in the presence of a single disk failure and one or irrecoverable reads errors—"bad blocks"—on the other disks.

OTHER QUIZ

- A system of physical clocks consists of two clocks, namely, one that is fast and gains five minutes every hour and another that slow and loses five minutes every hour.
- Assuming that the clocks are managed by Lamport's physical clock protocol, what will be the time marked by each clock at 4 pm given that:
- Both clocks indicated the correct time at noon;
- The processor on which the fast clock resides received at 2 pm a message from the other processor;
- No other messages were exchanged between the two processors; and
- Message transmission delays are negligible

Time	Fast clock	Slow clock
12 pm	12 pm	12 pm
1 pm		
2 pm		
3 pm		
4 pm		

Time	Fast clock	Slow clock
12 pm	12 pm	12 pm
1 pm	1:05 pm	12:55 pm
2 pm		
3 pm		
4 pm		

Time	Fast clock	Slow clock
12 pm	12 pm	12 pm
1 pm	1:05 pm	12:55 pm
2 pm	2:10 pm	1:50 pm
3 pm		
4 pm		

Message does not affect the fast clock

Time	Fast clock	Slow clock
12 pm	12 pm	12 pm
1 pm	1:05 pm	12:55 pm
2 pm	2:10 pm	1:50 pm
3 pm	3:15 pm	2:45 pm
4 pm	4:20 pm	3:40 pm

Second question

What is the major disadvantage of asynchronous distributed systems?

Second question

- What is the major disadvantage of asynchronous distributed systems?
 - We cannot guarantee that any asynchronous distributed system will operate correctly in the presence of any fault.

Third question

According to Ungaro and Ousterhout, when do the followers of a leader know that can safely commit log update?

Third question

- According to Ungaro and Ousterhout, when do the followers of a leader know that can safely commit log update?
- Once they have received from their leader an heartbeat or an AppendEntries message containing a value greater than or equal to the index of that log update.

Fourth question

- Assume that an intruder has compromised both the *host key* and *server key* of a SSHprotected server.
- How much of the previous traffic will the intruder be able to decode?

Fourth question

- Assume that an intruder has compromised both the *host key* and *server key* of a SSHprotected server.
- How much of the previous traffic will the intruder be able to decode?
 - One hour of traffic because the server key changes every hour.

Fifth question

Why is the BitTorrent chunk selection policy poorly suited to streaming applications?

Fifth question

- Why is the BitTorrent chunk selection policy poorly suited to streaming applications?
 - □ The BitTorrent chunk selection policy makes downloaders select the rarest chunks without regard to any timing constraints.

Sixth question

- Consider a RAID-5 array that has four data blocks, namely, d_0 , d_1 , d_2 , and d_3 , and one parity block p per stripe.
 - □ How many disk drives does the array have?

drives

Sixth question

- Consider a RAID-5 array that has four data blocks, namely, d_0 , d_1 , d_2 , and d_3 , and one parity block q per stripe.
 - □ How many disk drives does the array have?

Five drives

м

Sixth question

- Consider a RAID-5 array that has four data blocks, namely, d_0 , d_1 , d_2 , and d_3 , and one parity block p per stripe.
 - □ Assuming that block d_3 suddenly becomes unavailable, how could you reconstruct its contents?

Sixth question

- Consider a RAID-5 array that has four data blocks, namely, d_0 , d_1 , d_2 , and d_3 , and one parity block p per stripe.
 - □ Assuming that block d_3 suddenly becomes unavailable, how could you reconstruct its contents?

 $\mathbf{d}_3 = d_0 \text{ XOR } d_1 \text{ XOR } d_2 \text{ XOR } \mathbf{p}$

Seventh question

- Over the last ten years, many corporations have replaced their RAID level 5 disk arrays by RAID level 6 arrays even when handling double disk failures was not considered a major issue.
- Can you explain this paradox?

Seventh question

- Over the last ten years, many corporations have replaced their RAID level 5 disk arrays by RAID level 6 arrays even when handling double disk failures was not considered a major issue.
- Can you explain this paradox?
 - □ Because RAID level 5 fails to protect data in the presence of a single disk failure and one or irrecoverable reads errors—"bad blocks"—on the other disks.