Score:

COSC 6360

QUIZ #3

This exam is **closed book**. You can have **one page** of notes.

- **1.** Consider a RAID level 5 array with seven data blocks (b_0 to b_0) and one parity block p per stripe.
 - a) How much of the total disk space is used by *data blocks*? (10 *easy* points) 87.5 percent

(There are eight blocks per stripe and 7 of them hold data. Hence the ratio is 7/8 or 12.5 percent.)

b) What is the best way to **update block** b_1 and its parity block p? (10 points)

Fetch old values of blocks b_1 and p then compute new $p = \text{old } b_1$ XOR new b_1 XOR old p.

2. Consider a *two-ring* Totem system comprising two rings A and B. Assuming that a given processor has received messages with the following timestamps from each ring:

Rings	Messages
Α	m(3h55), m(4h12)
В	m(3h50), m(4h15)

Which messages will be delivered by the processor if all messages are agreed delivery messages? (10 points and no partial credit)

The processor will deliver messages	m(3h55) and m(4h12)	J	from ring A
		-	•

and messages m(3h50) from ring B.

- 3. In Kerberos,
 - a) Which key is used to encrypt the *authenticator* sent by the client to a given server S? (10 points)

A session key K_{c.s.}

b) Which Kerberos entity sends this key to the client? (10 points)

The ticke<u>t granting service.</u>_____

4. How does the tracker of a BitTorrent select the peers of a new downloader? (20 points)

Randomly.

- 5. What steps does **Sprite LFS** take to recover from a crash? (2×10 points)
 - a) Sprite LFS first recovers the state of the file system at the time the last checkpoint was taken as it is the last known consistent state of the system.
 - b) It then performs a roll-forward on the portion of the log recorded after the last checkpoint and updates all its data structures (including its i-node map) while ensuring that the file system always moves from one consistent state to another consistent state.

JULY 27, 2009