SOLUTIONS TO THE FOURTH 6360 QUIZ

Jehan-François Pâris Fall 2016

First question

NFS is said to use *idempotent requests*. What characterizes these requests?

□What is the main advantage of the approach?

First question

NFS is said to use *idempotent requests*.
What characterizes these requests?
Multiple executions of any request produce the same result s a single execution

□ What is the main advantage of the approach?

When a server crashes, client just resends its requests until it gets answers from the rebooted server

Second question

Consider an NFS file system that implements close-to-open consistency. What should the system client do

□When a user opens a file?

□ When a user close a file?

Second question

Consider an NFS file system that implements close-to-open consistency. What should the system client do

□ When a user opens a file?

It must check with the NFS server that any locally cached data are up-to-date

□ When a user close a file?

It must write all modified file data to the server

Third question

- Consider a distributed file system implementing close-to-open consistency.
- Assuming that
 - Alice opens a file at 9:30 AM, modifies it and closes it at 10:10 AM,
 - Bob opens the same file at 10:20 AM, modifies it and closes it at 10:30 AM,
 - □ Carol opens the same file at 10:25 AM, modifies it and closes it at 11:30 AM,

Third question

Alice	Bob	Carol	
-------	-----	-------	--

Which of these three users would see his or her changes actually incorporated in the final version of the file?

□ Alice and Carol

Fourth question

How do the Ceph metadata servers handle conflicting accesses by different clients to the same file?

Fourth question

- How do the Ceph metadata servers handle conflicting accesses by different clients to the same file?
 - □ When a Ceph MDS detects conflicting accesses by different clients to the same file
 - It revokes all caching and buffering permissions for that file
 - It forces synchronous I/O to the file

Fifth question

How does FARSITE store users' secret keys?

Fifth question

How does FARSITE store users' secret keys?
User private keys are encrypted with a symmetric key derived from user password and stored in a globally-readable directory in Farsite

Why?

Secret keys are too large to be memorized by users

Sixth question

Assuming that we want to protect a FARSITE distributed file system against *all double failures*,

What would be the *minimum size* for all your directory groups?

On how many hosts should the contents of your file be replicated?

Sixth question

Assuming that we want to protect a FARSITE distributed file system against *all double failures*,

What would be the *minimum size* for all your directory groups?

■ 3×2 + 1 = 7 hosts

On how many hosts should the contents of your file be replicated?

2 + 1 = 3 hosts

Seventh question

How does the LBFS file server ensure the atomicity of updates?

Seventh question

How does the LBFS file server ensure the atomicity of updates?

The LBFS server ensures the atomicity of updates by writing them first into a temporary file