

COSC 6360 December 11, 2019

First question

Why does FAWN try to minimize the memory footprint of its in-memory hash table?

First question

Why does FAWN try to minimize the memory footprint of its in-memory hash table?

FAWN tries to minimize the memory footprint of in-memory hash tables because larger in-memory hash tables would require larger memories and refreshing these larger memories would increase the power consumption of FAWN nodes.

Second question

What happens in FAWN when a physical node fails?

Second question

What happens in FAWN when a physical node fails?

The workload of the failed physical node gets reassigned to the successors of the virtual nodes hosted by the failed physical node.

Third question (Part A)

What is the purpose of Xen's shadow page tables?

Third question (Part A)

What is the purpose of Xen's shadow page tables?

The shadow page tables are page tables managed by Xen that map the virtual pages of a guest OS into actual machine pages. For that reason, they are used to resolve all TLB misses.

Third question (part B)

How does Xen keep these tables up to date?

Third question (part B)

How does Xen keep these tables up to date?

Xen marks the page tables of guest OSes <u>read-only</u> so that any changes made by a guest OS to one of its page table can be immediately reflected in the corresponding shadow page.

Fourth question

Why does Xen reserve for itself the top 64MB region of each address space?

Fifth question

How does the VMWare ESX server detect identical pages?

Fifth question

How does the VMWare ESX server detect identical pages?

They first compare page hashes then do a full comparison of the pages whose hashes match.

Sixth question

What is the main advantage of ballooning over other ways to reclaim memory space from a virtual machine?

Sixth question

What is the main advantage of ballooning over other ways to reclaim memory space from a virtual machine?

It does it in a way that is transparent to the guest OS while letting the guest OS decide with virtual pages will be expelled from main memory

Seventh question

- In the ACID acronym listing the properties of atomic transaction, what does the letter 'D' stand for?
 - D stands for:

Seventh question

- In the ACID acronym listing the properties of atomic transaction, what does the letter 'D' stand for?
 - □ *D* stands for: **Durability**

Committed data are immediately stored by the system in some kind of crash-proof storage.

Eighth question

Which is the correctness criterion used by Aegean?

Eighth question

Which is the correctness criterion used by Aegean?

□ <u>Undistinguishability</u>

A replicated service is correct if its outcomes are undistinguishable from those of an unreplicated service

Ninth question

What is the *purpose* of *request pipelining* in Aegean?

Ninth question

What is the *purpose* of *request pipelining* in Aegean?

To allows services to keep processing requests while their nested requests are being transmitted and processed.