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Goals

Extensibilit y● Extensibilit y
– Applications can dynamically extend system to

provide specialized services

● Safety
– Kernel is protected from actions of extensions

● Performance
– Extensibility and safety have low cost



Why is this hard?
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Approach

●● Put extension code in the kernel
– Cheap communication

● Use language protection features
– Static safety

● Dynamically interpose on any service
– Fine-grained extensibility



A SPIN extension
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SPIN structure
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Safety



Language-based protection

Modula-3
– Memory safe

– Interfaces for hiding resources

– Cheap capabili ties



Restricted dynamic linking

Goal: control access to interfaces cheaply

Strategy: restrict access at dynamic link-time
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Extensibility



Dispatcher

Event-based communication model
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Using Events

INTERFACE Network;
PROCEDURE PacketArrived(p:Pkt);

END Network.

MODULE EthernetDriver;
PROCEDURE Interrupt(p: Pkt) =
   BEGIN
        Network.PacketArrived(p);
   END Interrupt;

Event definition

Event raise



Other services

● Almost all “system” services are extensions
– Network protocols

– File systems

– System call i nterface

● SPIN only implements services which
cannot be safely implemented as extensions
– Processor execution state

– Basic interface to MMU and physical memory

– Device IO/DMA

– Dynamic linker and Dispatcher



A protocol graph in SPIN
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Design summary

● Safety
– Memory safe language for extensions

– Link-time enforcement for access control

● Extensibilit y
– Fast and safe centralized control transfer switch

● Result
– Allows fast and safe fine-grained service

extension



Performance



Platform

● SPIN runs on DEC Alpha platforms

● Measurements
– DEC AXP 3000/400 @ 133Mhz

● Comparison systems
– DEC OSF/1 V2.1

– Mach 3.0



SPIN performance advantages

● Extensions provide specialized service
– Don’ t execute unnecessary code

● Extensions close to kernel services
– Low latency response to faults/interrupts

– Invoking services is cheap



Per-port TCP packet forwarding
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Video service
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Other basic system services
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Conclusions

● It is possible to combine extensibility,
safety and performance in a single system

● Static mechanisms, implemented through
the compiler, make this possible

● http://www-spin.cs.washington.edu/

Web Server TCP

FileSystem

User
Kernel



Language-based capabilities

INTERFACE PageTable;
TYPE T <: REFANY;

PROCEDURE New(): T;
END PageTable.

INTERFACE PageTableInternal;
REVEAL PageTable.T =

BRANDED REF RECORD
   PTBase: ADDRESS;
   …
END;

END PageTableInternal.

t := PageTable.New();



Event implementation

Use procedure call to define and invoke events
– Convenient syntax

– High performance implementation for common
case

– Can protect events using domains

– Most procedures in the system can be extended



Protected communication
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Memory management services

0
200
400
600
800

1000
1200
1400
1600
1800

F
ault

T
rap

P
rot-1

P
rot-100

U
nprot-
100

A
ppel1

A
ppel2

T
im

e 
in

 m
ic

ro
se

co
nd

s DEC OSF/1

Mach 

SPIN



Modifications to Modula-3

● Memory safe cast
– VIEW operator

● Procedures which may be terminated
– EPHEMERAL procedure type

● Naming code
– INTERFACE UNIT, MODULE UNIT

● Universal procedure type
– PROCANY reference type



Performance of M3 vs C

MD5 checksum benchmark
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● Most operations are compiled equivalently
whether written in M3 or C

● M3 can sometimes introduce runtime
checks to guarantee type safety


