
Extensibility, Safety and Performance in
the SPIN Operating System

Brian Bershad, Stefan Savage, Przemyslaw Pardyak,
Emin Gun Sirer, Marc E. Fiuczynski, David Becker,

Craig Chambers, Susan Eggers

Department of Computer Science and Engineering
University of Washington

Goals

Extensibilit y● Extensibilit y
– Applications can dynamically extend system to

provide specialized services

● Safety
– Kernel is protected from actions of extensions

● Performance
– Extensibility and safety have low cost

Why is this hard?

Performance

ExtensibilityCan we have all
three in a single
operating system?

M
S-

D
O

S M
ach

SafetyUNIX

Approach

●● Put extension code in the kernel
– Cheap communication

● Use language protection features
– Static safety

● Dynamically interpose on any service
– Fine-grained extensibility

A SPIN extension

Application

VM Fault

SPIN MMU
Services

Application
Extension

ProtectFault() UnprotectPage()

User
Kernel

SPIN structure

Execution
State

Unix
Apps

OSF/1
Unix server

Video Server Web Server

File SysNetworkProcess

HTTPNet Video

Threads

Mach API
Unix API

Syscall

Applications

Application
Extensions

Shared
Extensions

SPIN Core
ServicesMemory Devices

Extension
Services

User
Kernel

Safety

Language-based protection

Modula-3
– Memory safe

– Interfaces for hiding resources

– Cheap capabili ties

Restricted dynamic linking

Goal: control access to interfaces cheaply

Strategy: restrict access at dynamic link-time

Extension A

Extension B

Service CodeDomain Z

Extensibility

Dispatcher

Event-based communication model

SPIN
Dispatcher

Event
Raisers

Event
Handlers

Using Events

INTERFACE Network;
PROCEDURE PacketArrived(p:Pkt);

END Network.

MODULE EthernetDriver;
PROCEDURE Interrupt(p: Pkt) =
 BEGIN
 Network.PacketArrived(p);
 END Interrupt;

Event definition

Event raise

Other services

● Almost all “system” services are extensions
– Network protocols

– File systems

– System call i nterface

● SPIN only implements services which
cannot be safely implemented as extensions
– Processor execution state

– Basic interface to MMU and physical memory

– Device IO/DMA

– Dynamic linker and Dispatcher

A protocol graph in SPIN

UDP
packet arrived

ICMP
packet arrived

TCP
packet arrived

IP packet arrived

Ether packet arrived

UDP recv
Active

 messages

RPC

Video

HTTP

TCP recv

TCP port 80
packet arrived

ICMP count Ping

IP count
UDP TCP ICMP

IP

Ether count

Ethernet driver

Design summary

● Safety
– Memory safe language for extensions

– Link-time enforcement for access control

● Extensibilit y
– Fast and safe centralized control transfer switch

● Result
– Allows fast and safe fine-grained service

extension

Performance

Platform

● SPIN runs on DEC Alpha platforms

● Measurements
– DEC AXP 3000/400 @ 133Mhz

● Comparison systems
– DEC OSF/1 V2.1

– Mach 3.0

SPIN performance advantages

● Extensions provide specialized service
– Don’ t execute unnecessary code

● Extensions close to kernel services
– Low latency response to faults/interrupts

– Invoking services is cheap

Per-port TCP packet forwarding

0
500

1000
1500
2000
2500
3000

Ethernet ATM

T
im

e
in

 m
ic

ro
se

co
nd

s

DEC OSF/1
SPIN

TCP packets in TCP packets outHTTP
Server

Video service

0
5

10
15
20
25
30
35
40
45

0 5 10 15

Number of Video Streams

P
er

ce
nt

 C
P

U
 U

ti
liz

ed

DEC OSF/1

SPIN

Other basic system services

0
200

400
600

800
1000

1200
1400

Fork/Join Protection
Fault

T
im

e
in

 m
ic

ro
se

co
nd

s

DEC OSF/1
Mach
SPIN

Conclusions

● It is possible to combine extensibility,
safety and performance in a single system

● Static mechanisms, implemented through
the compiler, make this possible

● http://www-spin.cs.washington.edu/

Web Server TCP

FileSystem

User
Kernel

Language-based capabilities

INTERFACE PageTable;
TYPE T <: REFANY;

PROCEDURE New(): T;
END PageTable.

INTERFACE PageTableInternal;
REVEAL PageTable.T =

BRANDED REF RECORD
 PTBase: ADDRESS;
 …
END;

END PageTableInternal.

t := PageTable.New();

Event implementation

Use procedure call to define and invoke events
– Convenient syntax

– High performance implementation for common
case

– Can protect events using domains

– Most procedures in the system can be extended

Protected communication

0

20

40

60

80

100

Protected
Call

System
Call

IPC

T
im

e
in

 m
ic

ro
se

co
nd

s

DEC OSF/1
Mach
SPIN0.13

845

Memory management services

0
200
400
600
800

1000
1200
1400
1600
1800

F
ault

T
rap

P
rot-1

P
rot-100

U
nprot-
100

A
ppel1

A
ppel2

T
im

e
in

 m
ic

ro
se

co
nd

s DEC OSF/1

Mach

SPIN

Modifications to Modula-3

● Memory safe cast
– VIEW operator

● Procedures which may be terminated
– EPHEMERAL procedure type

● Naming code
– INTERFACE UNIT, MODULE UNIT

● Universal procedure type
– PROCANY reference type

Performance of M3 vs C

MD5 checksum benchmark

0

5

10

15

SRC M3 Vortex
M3

GCC

T
im

e
in

 s
ec

on
ds

● Most operations are compiled equivalently
whether written in M3 or C

● M3 can sometimes introduce runtime
checks to guarantee type safety

