
Safely and Efficiently Multiprogramming a 64kB
Computer

Amit Levy Daniel Giffin Bradford Campbell Branden
Ghena Pat Pannuto Prabal Dutta Philip Levis Niklas

Adolfsson Fredrik Nilsson Josh Adkins Neal Jackson
et al. . .

June 14th, 2017

jfpar
Typewritten Text
A few months before SOSP

{
U2F App

Indicate
Attest

Register

U2F
HID

P-256

HOTP
Key-

board
HID

Count HMAC

GPG Smart Card

Key
Gen

CCID
ECC/
RSA

Capacitive
Touch Async

Timer

High Precision
Timer

GPIO

FlashRNGRNG

RNGUSB RNGSHA
RNGAES

Encryption
Oracle

Virtual
Endpoint

Count

Emerging class of embedded applications are software platforms,
rather than single purpose devices.

Embedded Software

I No isolation between components

I Deeply coupled components

I Static memory allocation to avoid unrecoverable runtime
memory exhaustion

I Fixed concurrency at compile-time

Embedded Hardware

I Low-power budget—micro-amps average current consumption

I 64kB of RAM

I Memory Protection Unit—a limited hardware protection
mechanism

jfpar
Typewritten Text
 (to limit the sleep current)

Challenges

I How to isolate components despite minimnal hardware
resouces?

I How to replace individual components without restarting the
whole system?

I How to avoid fixed concurrency with limited memory

jfpar
Typewritten Text
x

jfpar
Typewritten Text
r

jfpar
Typewritten Text

jfpar
Typewritten Text
Software platforms must support multiple independent
dynamically-loadable apps
 -- New performance and safety concerns

Common Solutions

I Give up on isolation—write completely bug-free code

I Whole system updates only

I Use *nix et al—forget about low power

Common Solutions

I Give up on isolation—write completely bug-free code

I Whole system updates only

I Use *nix et al—forget about low power

Common Solutions

I Give up on isolation—write completely bug-free code

I Whole system updates only

I Use *nix et al—forget about low power

Tock

Tock is a new operating system for low-power platforms that takes
advantage of the limited hardware-protection mechanisms available
on recent microcontrollers and the type-safety features of the Rust
programming language to provide a multiprogramming
environment:

I Isolation of software faults

I Efficient memory protection and management for dynamic
application workloads

I Update/restart/remove individual (user-space) components
independently

I Retains dependability requirements of long-running devices.

jfpar
Typewritten Text
-- Often run unattended

Tock Architecutre

Virtual Alarm

Timer SysCalls

Timer Driver

Timer I2CSPI

RF233 Driver

SPI Driver

802.15.4 Net.

Peripherals

Microcontroller

Kernel

Processes

I2C Driver

Temp Sensor

Capsules

I Capsules are components in the kernel
I Minimal runtime overhead:

I Isolated “at compile-time” using the Rust language
type/module system

I Cooperatively scheduled
I Can eliminate most isolation at compile-time

Capsules can. . .

I Violate real-time guarantees

I Panic (sort of. . . lets talk. . .)

But they cannot. . .

I Read arbitrary memory (secret encryption keys)

I Communicate with peripherals it’s not allowed to

jfpar
Typewritten Text

jfpar
Typewritten Text
Most capsules
are not trusted

Capsules

Stronger memory isolation than hardware protection?

struct DMAChannel {
...

enabled: bool,

buffer: &’static [u8],

}

Typing hardware register can constrain allowed values with very
fine granularity.

jfpar
Typewritten Text
-- Important because DMA hardware can manipulate data at
 any address

Processes

Can be unreliable since the system can respawn or kill processes
without affecting other functionality.

I Hardware isolated concurrent executions of programs

I Written in any language (currently C, C++, Lua and Rust-ish)

I Total control over their memory, including dynamic heap
allocation.

I Similar to processes in other systems.

I Separate stacks allows preemptive execution
I Memory isolated by the hardware

I Interact with kernel over a small but flexible system-call
interface:

I command, subscribe, allow
I yield, memop

jfpar
Typewritten Text
Non-blocking API

HW Timer

Process

Process

Process

Process
Scheduler

IRQ
Dispatch

com
man

d

subscribe

allow

Virtual Alarm Timer SysCalls

Timer Driver

jfpar
Typewritten Text
command: passes a a word-size integer to a capsule
allow: passes data buffers from processes to capsules
subscribe:sets up a callback

What happens when the kernel requires dynamic resources to
respond to a request from a process?

I We want to allow arbitrary apps so we don’t know
concurrency requirements:

I How many timers will an application need?
I Will it use SPI, UART, USB, Bluetooth, etc? One socket?

1000 sockets?

I If the kernel allocates memory for requests dynamically, it may
run out of resources.

Threads
Kernel
RAM

Syscall
RAM

Max
Used

1 3506 712 158

2 4216 1422 316

3 4928 2134 474

TOSThreads has low memory efficiency. Static allocation costs
710-712 bytes per thread, of which at most 158 bytes (22%) can
be in use at any time. These numbers do not include the thread
stacks, each of which can be less than 100 bytes.

jfpar
Typewritten Text
TOSThreads, is a threads package for TinyOS that combines
 the ease of a threaded programming model with the efficiency
of an event-based kernel.

Grants

Tock allows a process to “grant” to the kernel portions of its own
memory, which the kernel can use to maintain state for process
requests.

I Separate sections of kernel heap located in each process’s
memory space.

I Grant allocations for one process do not affect kernel’s ability
to allocate for another.

I Type-safe interface guarantees all grants for a process can be
freed immediately if the process dies.

I Basic idea: kernel API ensures there are no long-lived
pointers directly to grant-allocated memory.

Grant Requirements

I Process cannot access grant allocated memory

I We use an additional, dynamically determined MPU rule

I Ensure grant-allocated values unavailable to capsules once
process dies through limited API:

I Capsules pass a closure to the enter method
I Memory in a grant region only accessible from within closure
I Pointers to grant memory cannot escape the closure
I Implications on kernel design: should avoid cross process

data-structures

impl<T: Default> Grant {
fn create() -> Grant<T>

fn enter<F,R>(&self, proc_id: ProcId, func: F)

-> Result<R, Error> where

F: for<’b> FnOnce(&’b mut Owned<T>) -> R, R: Copy

fn each<F>(&self, func: F) where

F: for<’b> Fn(&’b mut Owned<T>)

}

Grants Compared to the Alternative

Recall: TOSThreads requires 700 bytes staticaly allocated in the
kernel for each additional thread. At most 22% can be used at any
given time.

I Grants require no additional per-thread memory in the kernel

I Only useful memory is dynamically allocated in grants

I Zero wasted memory since it can re-use memory for
non-concurrent operations.

Conclusion

I Resource constraints continue to be a challenge for embedded
system designers.

I Low-power, small form-factors and lower cost

I These limitations should not preclude software abstractions
and protections common in general-purpose computers.

I Tock provides both dynamic operation and dependability in
resource-constrained settings.

I Best of all: flexible multiprogramming, isolation, system
dependability

I Grants split the kernel heap across processes, allowing dynamic
demands for kernel resources despite limited system memory

Buy a Hail! https://tockos.org/hardware/hail

https://tockos.org/hardware/hail

	Tock

