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Emerging class of embedded applications are software platforms,
rather than single purpose devices.



Embedded Software

I No isolation between components

I Deeply coupled components

I Static memory allocation to avoid unrecoverable runtime
memory exhaustion

I Fixed concurrency at compile-time



Embedded Hardware

I Low-power budget—micro-amps average current consumption

I 64kB of RAM

I Memory Protection Unit—a limited hardware protection
mechanism
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Challenges

I How to isolate components despite minimnal hardware
resouces?

I How to replace individual components without restarting the
whole system?

I How to avoid fixed concurrency with limited memory
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Software platforms must support multiple independent
dynamically-loadable apps
 -- New performance and safety concerns



Common Solutions

I Give up on isolation—write completely bug-free code

I Whole system updates only

I Use *nix et al—forget about low power
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Tock



Tock is a new operating system for low-power platforms that takes
advantage of the limited hardware-protection mechanisms available
on recent microcontrollers and the type-safety features of the Rust
programming language to provide a multiprogramming
environment:

I Isolation of software faults

I Efficient memory protection and management for dynamic
application workloads

I Update/restart/remove individual (user-space) components
independently

I Retains dependability requirements of long-running devices.
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Tock Architecutre
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Capsules

I Capsules are components in the kernel
I Minimal runtime overhead:

I Isolated “at compile-time” using the Rust language
type/module system

I Cooperatively scheduled
I Can eliminate most isolation at compile-time

Capsules can. . .

I Violate real-time guarantees

I Panic (sort of. . . lets talk. . . )

But they cannot. . .

I Read arbitrary memory (secret encryption keys)

I Communicate with peripherals it’s not allowed to
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Capsules

Stronger memory isolation than hardware protection?

struct DMAChannel {
...

enabled: bool,

buffer: &’static [u8],

}

Typing hardware register can constrain allowed values with very
fine granularity.
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Processes

Can be unreliable since the system can respawn or kill processes
without affecting other functionality.

I Hardware isolated concurrent executions of programs

I Written in any language (currently C, C++, Lua and Rust-ish)

I Total control over their memory, including dynamic heap
allocation.

I Similar to processes in other systems.

I Separate stacks allows preemptive execution
I Memory isolated by the hardware

I Interact with kernel over a small but flexible system-call
interface:

I command, subscribe, allow
I yield, memop
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What happens when the kernel requires dynamic resources to
respond to a request from a process?

I We want to allow arbitrary apps so we don’t know
concurrency requirements:

I How many timers will an application need?
I Will it use SPI, UART, USB, Bluetooth, etc? One socket?

1000 sockets?

I If the kernel allocates memory for requests dynamically, it may
run out of resources.



Threads
Kernel
RAM

Syscall
RAM

Max
Used

1 3506 712 158

2 4216 1422 316

3 4928 2134 474

TOSThreads has low memory efficiency. Static allocation costs
710-712 bytes per thread, of which at most 158 bytes (22%) can
be in use at any time. These numbers do not include the thread
stacks, each of which can be less than 100 bytes.
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TOSThreads,  is a  threads  package  for  TinyOS  that  combines
 the ease of a threaded programming model with the efficiency
of an event-based kernel.  



Grants

Tock allows a process to “grant” to the kernel portions of its own
memory, which the kernel can use to maintain state for process
requests.

I Separate sections of kernel heap located in each process’s
memory space.

I Grant allocations for one process do not affect kernel’s ability
to allocate for another.

I Type-safe interface guarantees all grants for a process can be
freed immediately if the process dies.

I Basic idea: kernel API ensures there are no long-lived
pointers directly to grant-allocated memory.





Grant Requirements

I Process cannot access grant allocated memory

I We use an additional, dynamically determined MPU rule

I Ensure grant-allocated values unavailable to capsules once
process dies through limited API:

I Capsules pass a closure to the enter method
I Memory in a grant region only accessible from within closure
I Pointers to grant memory cannot escape the closure
I Implications on kernel design: should avoid cross process

data-structures



impl<T: Default> Grant {
fn create() -> Grant<T>

fn enter<F,R>(&self, proc_id: ProcId, func: F)

-> Result<R, Error> where

F: for<’b> FnOnce(&’b mut Owned<T>) -> R, R: Copy

fn each<F>(&self, func: F) where

F: for<’b> Fn(&’b mut Owned<T>)

}



Grants Compared to the Alternative

Recall: TOSThreads requires 700 bytes staticaly allocated in the
kernel for each additional thread. At most 22% can be used at any
given time.

I Grants require no additional per-thread memory in the kernel

I Only useful memory is dynamically allocated in grants

I Zero wasted memory since it can re-use memory for
non-concurrent operations.



Conclusion

I Resource constraints continue to be a challenge for embedded
system designers.

I Low-power, small form-factors and lower cost

I These limitations should not preclude software abstractions
and protections common in general-purpose computers.

I Tock provides both dynamic operation and dependability in
resource-constrained settings.

I Best of all: flexible multiprogramming, isolation, system
dependability

I Grants split the kernel heap across processes, allowing dynamic
demands for kernel resources despite limited system memory

Buy a Hail! https://tockos.org/hardware/hail

https://tockos.org/hardware/hail

	Tock



