Safely and Efficiently Multiprogramming a 64kB
Computer

Amit Levy Daniel Giffin Bradford Campbell Branden
Ghena Pat Pannuto Prabal Dutta Philip Levis Niklas
Adolfsson Fredrik Nilsson Josh Adkins Neal Jackson
et al...

June 14th, 2017

A few months before SOSP

jfpar
Typewritten Text
A few months before SOSP

U2F App HOTP GPG Smart Card
Indicate Key-

Attest Count P-256 board = Count HMAC CCID
Register

Key ECC/
Gen RSA

Capacitive
Touch : Encryption
Oracle

Emerging class of embedded applications are software platforms,
rather than single purpose devices.

Embedded Software

v

No isolation between components

v

Deeply coupled components

v

Static memory allocation to avoid unrecoverable runtime
memory exhaustion

v

Fixed concurrency at compile-time

Embedded Hardware

» Low-power budget—micro-amps average current consumption
» 64kB of RAM (to limit the sleep current)

» Memory Protection Unit—a limited hardware protection
mechanism

jfpar
Typewritten Text
 (to limit the sleep current)

Challenges

Software platforms must support multiple independent
dynamically-loadable apps
-- New performance and safety concerns

» How to isolate components despite minimxal hardware
resoues?

» How to replace individual components without restarting the
whole system?

» How to avoid fixed concurrency with limited memory

jfpar
Typewritten Text
x

jfpar
Typewritten Text
r

jfpar
Typewritten Text

jfpar
Typewritten Text
Software platforms must support multiple independent
dynamically-loadable apps
 -- New performance and safety concerns

Common Solutions

» Give up on isolation—write completely bug-free code

Common Solutions

» Give up on isolation—write completely bug-free code

» Whole system updates only

Common Solutions

» Give up on isolation—write completely bug-free code
» Whole system updates only

» Use *nix et al—forget about low power

<

=]

“F

Q>

Tock is a new operating system for low-power platforms that takes
advantage of the limited hardware-protection mechanisms available
on recent microcontrollers and the type-safety features of the Rust
programming language to provide a multiprogramming
environment:

» lIsolation of software faults

» Efficient memory protection and management for dynamic
application workloads
» Update/restart/remove individual (user-space) components
independently
> Retains dependability requirements of long-running devices.
-- Often run unattended

jfpar
Typewritten Text
-- Often run unattended

Tock Architecutre

Processes

Kernel

Microcontroller

Peripherals

Capsules

» Capsules are components in the kernel
» Minimal runtime overhead:

> Isolated “at compile-time" using the Rust language
type/module system

» Cooperatively scheduled

» Can eliminate most isolation at compile-time

Capsules can. .. Most capsules
are not trusted
» Violate real-time guarantees

» Panic (sort of... lets talk...)

But they cannot. ..

» Read arbitrary memory (secret encryption keys)

» Communicate with peripherals it's not allowed to

jfpar
Typewritten Text

jfpar
Typewritten Text
Most capsules
are not trusted

Capsules

Stronger memory isolation than hardware protection?

struct DMAChannel {

enabled: bool,
buffer: &’static [u8],

}

Typing hardware register can constrain allowed values with very
fine granularity.

-- Important because DMA hardware can manipulate data at
any address

jfpar
Typewritten Text
-- Important because DMA hardware can manipulate data at
 any address

Processes

Can be unreliable since the system can respawn or kill processes
without affecting other functionality.

» Hardware isolated concurrent executions of programs
» Written in any language (currently C, C++, Lua and Rust-ish)

» Total control over their memory, including dynamic heap
allocation.

» Similar to processes in other systems.

» Separate stacks allows preemptive execution
» Memory isolated by the hardware

> Interact with kernel over a small but flexible system-call
interface:

» command, subscribe, allow Non-blocking API
> yield, memop

jfpar
Typewritten Text
Non-blocking API

Virtual Alarm Timer SysCalls

Timer Driver VB Process

DI Scheduler

HW Timer Process

command: passes a a word-size integer to a capsule
allow: passes data buffers from processes to capsules
subscribe:sets up a callback

jfpar
Typewritten Text
command: passes a a word-size integer to a capsule
allow: passes data buffers from processes to capsules
subscribe:sets up a callback

What happens when the kernel requires dynamic resources to
respond to a request from a process?

» We want to allow arbitrary apps so we don't know
concurrency requirements:
» How many timers will an application need?

» Will it use SPI, UART, USB, Bluetooth, etc? One socket?
1000 sockets?

> If the kernel allocates memory for requests dynamically, it may
run out of resources.

Kernel Syscall Max
Threads RAM RAM Used
1 3506 712 158
2 4216 1422 316
3 4928 2134 474

TOSThreads has low memory efficiency. Static allocation costs
710-712 bytes per thread, of which at most 158 bytes (22%) can
be in use at any time. These numbers do not include the thread
stacks, each of which can be less than 100 bytes.

TOSThreads, is a threads package for TinyOS that combines
the ease of a threaded programming model with the efficiency

of an event-based kernel.

jfpar
Typewritten Text
TOSThreads, is a threads package for TinyOS that combines
 the ease of a threaded programming model with the efficiency
of an event-based kernel.

Grants

Tock allows a process to “grant” to the kernel portions of its own
memory, which the kernel can use to maintain state for process
requests.

» Separate sections of kernel heap located in each process's
memory space.

» Grant allocations for one process do not affect kernel's ability
to allocate for another.

» Type-safe interface guarantees all grants for a process can be
freed immediately if the process dies.

» Basic idea: kernel API ensures there are no long-lived
pointers directly to grant-allocated memory.

Processes
(Any language)

grant

heap
data
stack

[text)

RAM

FIashI

grant

heap
data

stack

Ciext)

Process
Accessible
Memory

Grant Requirements

» Process cannot access grant allocated memory
» We use an additional, dynamically determined MPU rule

» Ensure grant-allocated values unavailable to capsules once
process dies through limited API:

Capsules pass a closure to the enter method

Memory in a grant region only accessible from within closure
Pointers to grant memory cannot escape the closure
Implications on kernel design: should avoid cross process
data-structures

vV vy vVvYyYy

impl<T: Default> Grant {
fn create() —-> Grant<T>

fn enter<F,R>(&self, proc_id: ProcId, func: F)
-> Result<R, Error> where
F: for<’b> FnOnce(&’b mut Owned<T>) -> R, R: Copy

fn each<F>(&self, func: F) where
F: for<’b> Fn(&’b mut Owned<T>)

Grants Compared to the Alternative

Recall: TOSThreads requires 700 bytes staticaly allocated in the
kernel for each additional thread. At most 22% can be used at any
given time.

» Grants require no additional per-thread memory in the kernel
» Only useful memory is dynamically allocated in grants

» Zero wasted memory since it can re-use memory for
non-concurrent operations.

Conclusion

v

Resource constraints continue to be a challenge for embedded
system designers.

» Low-power, small form-factors and lower cost

» These limitations should not preclude software abstractions
and protections common in general-purpose computers.

» Tock provides both dynamic operation and dependability in
resource-constrained settings.

» Best of all: flexible multiprogramming, isolation, system
dependability

» Grants split the kernel heap across processes, allowing dynamic
demands for kernel resources despite limited system memory

Buy a Haill https://tockos.org/hardware/hail

https://tockos.org/hardware/hail

	Tock

