
The Efficient Server Audit Problem,
Deduplicated Re-execution,

and the Web

Cheng Tan, Lingfan Yu,
Joshua B. Leners*, and Michael Walfish

NYU Department of Computer Science, Courant Institute
*Two Sigma Investments

Amazon Web Services company

Alice

employee

employee

wiki PHP

Amazon Web Services company

web server

OS

PHP runtime

hypervisor

hardware

database wiki PHP
Alice

employee

employee

request

response

Amazon Web Services company

web server

OS

PHP runtime

hypervisor

hardware

database wiki PHP
Alice

employee

employee

request

response

•  Alice has confidence in the wiki's PHP code

Amazon Web Services company

web server

OS

PHP runtime

hypervisor

hardware

database wiki PHP
Alice

employee

employee

request

response

•  Alice has confidence in the wiki's PHP code
•  Still, lots of things can go wrong ...

Amazon Web Services company

web server

OS

PHP runtime

hypervisor

hardware

database wiki PHP
Alice

employee

employee

request

response

•  Alice has confidence in the wiki's PHP code
•  Still, lots of things can go wrong ...

kiwi PHP

Amazon Web Services company

web server

OS

PHP runtime

hypervisor

hardware

database wiki PHP
Alice

employee

employee

request

response

•  Alice has confidence in the wiki's PHP code
•  Still, lots of things can go wrong ...

PCP runtime

Amazon Web Services company

web server

OS

PHP runtime

hypervisor

hardware

database wiki PHP
Alice

employee

employee

request

response

•  Alice has confidence in the wiki's PHP code
•  Still, lots of things can go wrong ...

OS

hypervisor

OS

Amazon Web Services company

web server

OS

PHP runtime

hypervisor

hardware

database wiki PHP
Alice

employee

employee

request

response

•  Alice has confidence in the wiki's PHP code
•  Still, lots of things can go wrong ...

web server

Amazon Web Services company

web server

OS

PHP runtime

hypervisor

hardware

database wiki PHP
Alice

employee

employee

request

response

•  Alice has confidence in the wiki's PHP code
•  Still, lots of things can go wrong ...

kiwi PHP

PCP runtime

OS

hypervisor

OS

web server

Amazon Web Services company

web server

OS

PHP runtime

hypervisor

hardware

database wiki PHP
Alice

employee

employee

request

response

•  Alice has confidence in the wiki's PHP code
•  Still, lots of things can go wrong ...

kiwi PHP

PCP runtime

OS

hypervisor

OS

web server

Amazon Web Services company

web server

OS

PHP runtime

hypervisor

hardware

database wiki PHP
Alice

employee

employee

request

response

•  Alice has confidence in the wiki's PHP code
•  Still, lots of things can go wrong ...

kiwi PHP

PCP runtime

OS

hypervisor

OS

web server

•  Thus, Alice wants to audit the delivered responses
–  Are they derived from executing the actual application?

The Efficient Server Audit Problem

program

server

The Efficient Server Audit Problem

program
requests

responses

server
online phase

clients

The Efficient Server Audit Problem

program
requests

responses

server
online phase

clients

2. server is concurrent
1. server is untrusted; can respond arbitrarily

The Efficient Server Audit Problem

program
requests

responses

server
online phase

clients

2. server is concurrent
1. server is untrusted; can respond arbitrarily

trace
collector

trace

Amazon Web Services company

request

response
web server

OS

PHP runtime

hypervisor

hardware

OS

hypervisor

database

OS

web server

wiki PHP kiwi PHP

PCP runtime

Alice

employee

employee

wiki PHP

trace
collector

The Efficient Server Audit Problem

program

verifier

audit phase

requests

responses

server
online phase

clients

trace
collector

trace

2. server is concurrent
1. server is untrusted; can respond arbitrarily

The Efficient Server Audit Problem

program

verifier

audit phase

requests

responses

server
online phase

clients

trace
collector

trace

=?
program +requests

responses

2. server is concurrent
1. server is untrusted; can respond arbitrarily

The Efficient Server Audit Problem

program

verifier

audit phase

requests

responses

server
online phase

clients

trace
collector

trace

=?
program +requests

responses

2. server is concurrent
1. server is untrusted; can respond arbitrarily

4. server overhead is low; legacy applications supported
3. verifier is weaker than server

The Efficient Server Audit Problem

program

verifier

audit phase

requests

responses

server
online phase

clients
=?

program +requests

responses

trace
collector

trace

1. server is untrusted…
2. server is concurrent
3. verifier is weaker than server
4. server overhead is low...

The Efficient Server Audit Problem

program

verifier

audit phase

requests

responses

server
online phase

clients
=?

program +requests

responses

•  Combination of these four is a new problem.
•  Execution integrity is complementary to program verification.

trace
collector

trace

1. server is untrusted…
2. server is concurrent
3. verifier is weaker than server
4. server overhead is low...

1. server is untrusted…
2. server is concurrent
3. verifier is weaker than server
4. server overhead is low...

program

verifier
audit phase

requests

responses

server
online phase

clients

trace

trace
collector

1. server is untrusted…
2. server is concurrent
3. verifier is weaker than server
4. server overhead is low...

What about naive re-execution?

program

verifier
audit phase

requests

responses

server
online phase

clients

trace

trace
collector

1. server is untrusted…
2. server is concurrent
3. verifier is weaker than server
4. server overhead is low...

What about naive re-execution?

 =
?

delivered
responses

produced
responses

program

verifier
audit phase

requests

responses

server
online phase

clients

trace

trace
collector

What about naive re-execution?

 =
?

delivered
responses

•  This does not save the verifier work.

1. server is untrusted…
2. server is concurrent
3. verifier is weaker than server
4. server overhead is low...
❌

✔	
✔	

✔	

produced
responses

program

verifier
audit phase

requests

responses

server
online phase

clients

trace

trace
collector

 =
?

produced
responses

delivered
responses

•  This does not save the verifier work.
•  Instead, we will accelerate re-execution.

1. server is untrusted…
2. server is concurrent
3. verifier is weaker than server
4. server overhead is low...

1. server is untrusted…
2. server is concurrent
3. verifier is weaker than server
4. server overhead is low...
❌

✔	
✔	

✔	

1. server is untrusted…
2. server is concurrent
3. verifier is weaker than server
4. server overhead is low...

❓

✔	
❓

❓
What about naive re-execution?

Rest of the talk

1.  How does the verifier accelerate re-execution?

2.  Why are shared objects (such as DBs) challenging?

3.  Does our implementation for PHP perform well?

(these two are in tension)

Rest of the talk

1.  How does the verifier accelerate re-execution?

2.  Why are shared objects (such as DBs) challenging?

3.  Does our implementation for PHP perform well?

1.  How does the verifier accelerate re-execution?

Accelerating re-execution: a 30,000-foot view

server (online)

verifier (offline)

advice

•  Deduplicate computation across requests

Poirot’s observation: repeated computation

T.	Kim,	R.	Chandra,	and	N.	Zeldovich.		
Efficient	patch-based	audi>ng	for	web	applica>ons.	OSDI,	2012	

Poirot’s observation: repeated computation

T.	Kim,	R.	Chandra,	and	N.	Zeldovich.		
Efficient	patch-based	audi>ng	for	web	applica>ons.	OSDI,	2012	

Poirot’s observation: repeated computation

reqi

reqj

“My	paper”	

“Another	paper”	

T.	Kim,	R.	Chandra,	and	N.	Zeldovich.		
Efficient	patch-based	audi>ng	for	web	applica>ons.	OSDI,	2012	

Poirot’s observation: repeated computation

reqi

reqj

“My	paper”	

“Another	paper”	

T.	Kim,	R.	Chandra,	and	N.	Zeldovich.		
Efficient	patch-based	audi>ng	for	web	applica>ons.	OSDI,	2012	

	
	
	
	
	
	

requires trusting the
advice

We accelerate re-execution without trusting the server
server (online)

verifier (offline)

C: tag→{set of reqs} for each tag:
–  execute C(tag) with

 SIMD-on-demand
–  conduct unanimity checks

We accelerate re-execution without trusting the server

SIMD-on-demand re-executes identical instructions once.

server
reqi
reqj

verifier

reqi+reqj

server (online)

verifier (offline)

C: tag→{set of reqs} for each tag:
–  execute C(tag) with

 SIMD-on-demand
–  conduct unanimity checks

SIMD-on-demand eliminates redundant computation

main(a,b):	
		c	←	a	*	b	
		c	←	c	+	1	

reqi:
reqj:

a=1;b=2
a=2;b=1

SIMD-on-demand eliminates redundant computation

main(a,b):	
		c	←	a	*	b	
		c	←	c	+	1	

reqi:
reqj:

a=1;b=2
a=2;b=1

reqi+reqj
c=[2,2] +1

*	

*	

a=[1,2]
b=[2,1]

•  Multi-value represents different values of the same variable.

•  Verifier collapses multi-value to scalar if possible.

c=3 reqi+reqj
c=[2,2] +1

*	

*	

a=[1,2]
b=[2,1] c=2

•  Multi-value represents different values of the same variable.

SIMD-on-demand eliminates redundant computation

main(a,b):	
		c	←	a	*	b	
		c	←	c	+	1	

reqi:
reqj:

a=1;b=2
a=2;b=1

Recap

•  Verifier re-executes in an accelerated way …

•  ... by exploiting advice from the server ...

•  ... without trusting that advice.

1.  How does the verifier accelerate re-execution?

2.  Why are shared objects (such as DBs) challenging?

3.  Does our implementation for PHP perform well?

•  Will try to give some intuition for the difficulties

•  Solutions in the paper, rigorous proofs in tech report

	
	

server	(online)	
UPDATE	

database	

put	

get	

SELECT	

key-value	
store	

•  For now, assume simple storage model
–  Read-write registers, named with letters

•  Will try to give some intuition for the difficulties

•  Solutions in the paper, rigorous proofs in tech report

	
	 register	B	

register	A	

write(B,12)	

12←read(B)	

56←read(A)	

write(A,56)	

server	(online)	

Central challenge: re-execution is out of order

	
	write(B,12)	

12←read(B)	

register	B	

56←read(A)	

write(A,56)	
register	A	

	
	

verifier	(offline)	

register	B	

…	
server	(online)	

Central challenge: re-execution is out of order

	
	write(B,12)	

12←read(B)	

register	B	

56←read(A)	

write(A,56)	
register	A	

	
	

verifier	(offline)	

register	B	

…	
server	(online)	 …	

Central challenge: re-execution is out of order

	
	write(B,12)	

12←read(B)	

register	B	

56←read(A)	

write(A,56)	
register	A	

	
	

verifier	(offline)	

register	B	
write(B,12)	

←read(B)	?
…	

server	(online)	 …	

How can the verifier re-execute reads? Attempt 1:

•  Server logs read values; verifier supplies from log

advice reqi
register B
READ 12

… …

	
	write(B,12)	

12←read(B)	

register	B	

56←read(A)	

write(A,56)	
register	A	

	
	 register	B	

write(B,12)	

12←read(B)	

…	
verifier	(offline)	server	(online)	 …	

How can the verifier re-execute reads? Attempt 1:

•  Server logs read values; verifier supplies from log
•  This can fool the verifier

advice reqi
register B
READ 12

… …
reqi

register B
READ 999

	
	write(B,12)	

12←read(B)	

register	B	

56←read(A)	

write(A,56)	
register	A	

	
	 register	B	

write(B,12)	

12←read(B)	

999←read(B)	

…	
999←read(B)	

verifier	(offline)	server	(online)	 …	

How can the verifier re-execute reads? Attempt 2:

advice	 reqj
register B
WRITE 12

… …
reqk

register B
READ

	
	

write(B,12)	

12←read(B)	

register	B	

56←read(A)	

write(A,56)	
register	A	

	
	 register	B	

write(B,12)	

12←read(B)	

•  Server: logs operands
•  Verifier: simulates reads using log and checks writes

…	
verifier	(offline)	server	(online)	 …	

How can the verifier re-execute reads? Attempt 2:

advice	 reqj
register B
WRITE 12

… …
reqk

register B
READ

	
	

write(B,12)	

12←read(B)	

register	B	

56←read(A)	

write(A,56)	
register	A	

	
	 register	B	

write(B,12)	

12←read(B)	

•  Server: logs operands
•  Verifier: simulates reads using log and checks writes

…	
verifier	(offline)	server	(online)	 …	

How can the verifier re-execute reads? Attempt 2:

advice	 reqj
register B
WRITE 12

… …
reqk

register B
READ

check	if	“WRITE	12”	

	
	

write(B,12)	

12←read(B)	

register	B	

56←read(A)	

write(A,56)	
register	A	

	
	 register	B	

write(B,12)	

12←read(B)	

•  Server: logs operands
•  Verifier: simulates reads using log and checks writes

…	
verifier	(offline)	server	(online)	 …	

Another challenge is validating the log order

•  Order in log could be nonsensical

•  Verifier must check consistency of log:
–  Is log order consistent with observed request order?

req1	
req2	

resp1	

resp2	

req3	

resp4	

server	
req4	

resp3	

… … req2
op

req3
op

req2
op

req1
op

?
consistent	with	

•  This check must be efficient

1.  How does the verifier accelerate re-execution?

2.  Why are shared objects (such as DBs) challenging?

3.  Does our implementation for PHP perform well?

A built system: Orochi

•  Orochi targets apps based on PHP and SQL (“LAMP”)

•  Server and verifier: modified PHP runtimes

•  Includes techniques for deduplicating database queries

•  Details
–  Built atop HipHop VM (HHVM)
–  20K lines of C++, PHP, Bash, Python

•  Is auditing efficient for the verifier?

•  What is the price of verifiability?

•  How compatible is Orochi with legacy applications?

Evaluation questions

•  Applications:
–  MediaWiki, phpBB and HotCRP

•  Workloads:
–  MediaWiki: Wikipedia 2007 trace
–  phpBB: 7-day’s posts from CentOS forum
–  HotCRP: Simulation of SIGCOMM’09

Our workloads see a lot of redundant computation

MediaWiki’s workload (20K requests)

propor>on	of	iden>cal	instruc>ons	

th
e	
nu

m
be

r	o
f	r
eq

ue
st
s	

0	

200	

400	

600	

800	

CP
U
	>
m
e	
ta
ke
	(s
)	

PHP	 DB	 Others	

Orochi's verifier is efficient
be

a
er
	 10.9x	

MediaWiki’s workload phpBB’s workload HotCRP’s workload

5.6x	 6.2x	

* Pessimistically estimated from the original online execution

Naive	
re-execu>on*		Orochi	

Naive	
re-execu>on*		Orochi	

Naive	
re-execu>on*		Orochi	

Orochi's verifier achieves speedups compared to naive replay

The price of verifiability is tolerable

CPU

MediaWiki’s workload

phpBB’s workload

HotCRP’s workload

4.7%

8.6%

5.9%

trace
(per req)

advice
(per req)

Orochi’s
overhead

7.1KB 1.7KB 11.4%

5.7KB 0.3KB 2.7%

Network

MediaWiki’s workload

phpBB’s workload

HotCRP’s workload

3.2KB 0.4KB 10.9%

Storage

MediaWiki’s workload

phpBB’s workload

HotCRP’s workload

1.0x

1.7x

1.5x

Verifier needs to store the trace and advice for one audit epoch.

Orochi requires modest application adjustments

•  Lines of code modified:
–  346 lines of code change for MediaWiki
–  270 lines of code change for phpBB
–  67 lines of code change for HotCRP

•  Most of the changes are due to
–  PHP features that our implementation does not support
–  Modifying the application to respect object semantics

Recap of evaluation

•  Verifier: 5.6--10.9x speedup over naive re-execution

•  Costs: storage at verifier, <10% overhead on server

•  Compatibility: Modest application changes

Related work, future work,
and wrap-up

Related work

•  Efficient execution integrity
–  Replication: BFT
–  Attestation: TPMs, SGX
–  Probabilistic proofs: Pepper, CMT, Pinocchio, Pantry, SNARKs

•  Computation deduplication (Delta execution, iThreads)

•  Record-replay
–  Untrusted recorder: Accountable Virtual Machines
–  Accelerated replayer: Poirot
–  Multiprocessor: RecPlay, LEAP, DoublePlay, PRES, ODR, …

1. server is untrusted
2. server is concurrent
3. verifier is weaker than server
4. server overhead is low; compatibility

1. server is untrusted
2. server is concurrent
3. verifier is weaker than server
4. server overhead is low; compatibility

❌1. server is untrusted
2. server is concurrent
3. verifier is weaker than server
4. server overhead is low; compatibility

❌

❌

–  Attestation: TPMs, SGX

Related work

•  Efficient execution integrity
–  Replication: BFT
–  Attestation: TPMs, SGX
–  Probabilistic proofs: Pepper, CMT, Pinocchio, Pantry, SNARKs

•  Computation deduplication (Delta execution, iThreads)

•  Record-replay
–  Untrusted recorder: Accountable Virtual Machines
–  Accelerated replayer: Poirot
–  Multiprocessor: RecPlay, LEAP, DoublePlay, PRES, ODR, …

1. server is untrusted
2. server is concurrent
3. verifier is weaker than server
4. server overhead is low; compatibility

1. server is untrusted
2. server is concurrent
3. verifier is weaker than server
4. server overhead is low; compatibility

❌1. server is untrusted
2. server is concurrent
3. verifier is weaker than server
4. server overhead is low; compatibility

❌

❌

1. server is untrusted
2. server is concurrent
3. verifier is weaker than server
4. server overhead is low; compatibility

❌

❌

–  Probabilistic proofs: Pepper, CMT, Pinocchio, Pantry, SNARKs

Related work

•  Efficient execution integrity
–  Replication: BFT
–  Attestation: TPMs, SGX
–  Probabilistic proofs: Pepper, CMT, Pinocchio, Pantry, SNARKs

•  Computation deduplication (Delta execution, iThreads)

•  Record-replay
–  Untrusted recorder: Accountable Virtual Machines
–  Accelerated replayer: Poirot
–  Multiprocessor: RecPlay, LEAP, DoublePlay, PRES, ODR, …

1. server is untrusted
2. server is concurrent
3. verifier is weaker than server
4. server overhead is low; compatibility

1. server is untrusted
2. server is concurrent
3. verifier is weaker than server
4. server overhead is low; compatibility

❌1. server is untrusted
2. server is concurrent
3. verifier is weaker than server
4. server overhead is low; compatibility

❌

❌

1. server is untrusted
2. server is concurrent
3. verifier is weaker than server
4. server overhead is low; compatibility

❌

❌

•  Computation deduplication (Delta execution, iThreads)

•  Record-replay

Wrap-up and future work

•  Our solution to the Efficient Server Audit Problem:
–  Includes a new accelerated re-execution technique
–  Includes new algorithms for verifying concurrent executions
–  Comes with a rigorous proof of correctness

•  Our instantiation for PHP, SQL web apps:
–  5-10x speedups over a naive replay; <10% CPU overhead on server

•  Future work includes:
–  SGX integration
–  Extend to multiple interacting servers
–  Accelerate other record-replay systems

