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•  Thus, Alice wants to audit the delivered responses 
–  Are they derived from executing the actual application? 
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Accelerating re-execution: a 30,000-foot view 
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Recap 

•  Verifier re-executes in an accelerated way … 

•  ... by exploiting advice from the server ... 

•  ... without trusting that advice. 
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•  For now, assume simple storage model 
–  Read-write registers, named with letters 
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Another challenge is validating the log order 

•  Order in log could be nonsensical 

•  Verifier must check consistency of log: 
–  Is log order consistent with observed request order? 
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op 
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?
consistent	with	

•  This check must be efficient 
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A built system: Orochi 

•  Orochi targets apps based on PHP and SQL (“LAMP”) 

•  Server and verifier: modified PHP runtimes 

•  Includes techniques for deduplicating database queries 

•  Details 
–  Built atop HipHop VM (HHVM) 
–  20K lines of C++, PHP, Bash, Python 



•  Is auditing efficient for the verifier? 

•  What is the price of verifiability? 

•  How compatible is Orochi with legacy applications? 

Evaluation questions 



•  Applications: 
–  MediaWiki, phpBB and HotCRP 

•  Workloads: 
–  MediaWiki:  Wikipedia 2007 trace 
–  phpBB:  7-day’s posts from CentOS forum 
–  HotCRP:  Simulation of SIGCOMM’09 
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Orochi's verifier achieves speedups compared to naive replay 



The price of verifiability is tolerable 

CPU 
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Verifier needs to store the trace and advice for one audit epoch.  



Orochi requires modest application adjustments 

•  Lines of code modified: 
–  346 lines of code change for MediaWiki 
–  270 lines of code change for phpBB 
–  67 lines of code change for HotCRP 

•  Most of the changes are due to 
–  PHP features that our implementation does not support 
–  Modifying the application to respect object semantics 



Recap of evaluation 

•  Verifier: 5.6--10.9x speedup over naive re-execution 

•  Costs: storage at verifier, <10% overhead on server  

•  Compatibility: Modest application changes 
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Wrap-up and future work 

•  Our solution to the Efficient Server Audit Problem: 
–  Includes a new accelerated re-execution technique 
–  Includes new algorithms for verifying concurrent executions 
–  Comes with a rigorous proof of correctness 

•  Our instantiation for PHP, SQL web apps: 
–  5-10x speedups over a naive replay; <10% CPU overhead on server 

•  Future work includes: 
–  SGX integration 
–  Extend to multiple interacting servers 
–  Accelerate other record-replay systems 


