
 1

Resource-Efficient Software Delivery Using Volunteer Assistance 
 

 Purvi Shah
*
 Jeffrey Morgan Miranda Mowbray 

 Jehan-François Pâris John Schettino Hewlett-Packard Labs 
 Department of Computer Science Chandrasekar Venkatraman Bristol, UK 
 University of Houston Hewlett-Packard Labs  
 Houston, TX Palo Alto, CA  

ABSTRACT 
We propose to apply Peer-to-Peer (P2P) technology to 
resolve the scalability problems observed in current 
techniques used to provide management and maintenance 
services in enterprise networks. We aim to create a content 
delivery infrastructure that can be used by managed 
services organizations, on the basis of donated servers, to 
help download and maintain software packages. 

Keywords 
Content delivery networks, trace analysis, synchronization, 
peer-to-peer, data integrity, load balancing 

1 I,TRODUCTIO, 
While existing content delivery networks (CDNs) such as 
Akamai [1] can provide very large service capacity, the cost 
of maintaining such CDNs is very high. Previous work on 
volunteer computing proves that distributed computing 
projects such as SETI@Home [2] using donated machines 
can work as well or even better than the largest 
supercomputers.  While CDNs such as CORAL [4] offer an 
attractive solution, CDNs including donated resources need 
to address additional security and load balancing issues. 

2 TRACE A,ALYSIS 
We began by analyzing 10 days worth of logs associated 
with a software package delivery system supporting Linux 
installations and updates in an enterprise. We made the 
following important observations regarding the package 
downloads, 

• Our repository served system software and updates for 
approximately 10 different Linux distributions and 
consisted of roughly 2.2 million files, 91% of which are 
smaller than one megabyte.  

 

————————— 

* 
 Student author (purvi@cs.uh.edu).   Most of this work was performed 

while this author was visiting HP Labs in Palo Alto. 

 

Fig. 1. Workload on the Existing System. 

• The total size of the repository is approximately 2.86 TB. 
Image (.iso files) downloads comprises 71% of the total 
upload compared to the other packages. Nevertheless the 
percentage of downloads for update packages (for 
instance .rpm files) is large. 

• We observed interesting access patterns such as flash 
crowds in the event of new package release. 

• We found out that 17% of large files were identical and 
differ from other files only in name. This is because a 
large number of software packages are the same for 
different Linux distributions. 

• We also observed there was considerable similarity 
between different versions of the same package. 

Based on our observations we believe a software package 
delivery system needs to be optimized for efficient delivery 
of small and large sized files. It should be capable of 
managing flash crowd scenarios and be able to exploit the 
similarity between files. 

We also observed that various departments within the 
enterprise manage around forty edge nodes that maintain 
complete or partial mirrors of the software repository for 
serving updates to a small set of machines. By studying 
data traces collected over a period of 35 days by an edge 
node we observed that it spent on average 1.81 hours daily 
(max.: 20.53, min.: 0.54) synchronizing its repository with 
the server. 

In summary Fig. 1 gives an idea about the current system 
design and its workload. 

Permission to make digital or hard copies of all or part of this work for 

personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that copies 

bear this notice and the full citation on the first page. To copy otherwise, 

or republish, to post on servers or to redistribute to lists, requires prior 
specific permission and/or a fee. 
Co�EXT’07, Dec 10–13, 2007, �ew York City, �ew York, USA. 
Copyright 2007 ACM 978-1-59593-770-4/ 07/ 0012 5.00. 



 2

3 SOFTWARE SY,CHRO,IZATIO, BY THE 
EDGE ,ODES 

With insights from our trace analysis we first developed a 
tool that uses file-swarming techniques based on the 
BitTorrent [3] protocol to efficiently synchronize the 
repository on the edge nodes. It integrates P2P technology 
into the existing synchronization system and is also able to 
exploit the presence of identical files.  

This integration was feasible because all edge nodes use the 
same rsync tool [5] to synchronize their repository with the 
central server. Our results using the Emulab [6] network 
testbed indicate that the integration of file-swarming 
techniques with the synchronization software reduces the 
server workload of synchronizing the edge nodes 
significantly. 

In our testing we laid more emphasis in examining the 
issues when using synchronization with file-swarming 
techniques. We learnt that there is tradeoff between 
exploiting similarity between the different versions of the 
package and the performance of the swarm for small file 
sizes. Synchronization software prefers smaller chunk sizes 
(approximately square root of the file size) to exploit the 
similarity between file versions while file-swarming 
techniques require moderately large chunk sizes 
(approximately 64 KB) to utilize the network socket buffers 
in the most efficient fashion. 

4 SOFTWARE PACKAGE DELIVERY TO THE 
CUSTOMERS 

Next we explored strategies to improve the software 
package delivery. A major problem in integrating pure P2P 
solutions in this scenario is that customers use different 
tools. Furthermore when providing a delivery service we 
desire to avoid consuming the customer bandwidth if there 
is an alternative way to procure the required bandwidth. 

We contacted the administrators of the edge nodes and 
asked them whether they would be willing to volunteer 
their nodes for uploading software to machines not under 
their direct administration. Their acceptance allowed us to 
propose a better system design. 

As shown in Fig. 2 a customer requests the server for a file. 
The server with the help of a file-swarming tracker then 
redirects the request to one of the volunteer nodes hosting 
the file. The customer downloads the entire file from that 
volunteer. Note that like existing CDNs our solution does 
not require custom tools. 

There are several challenges involved in designing such a 
distributed infrastructure. Unlike CDNs that may use either 
dedicated connections or a private high speed networks for 
synchronization of their edge nodes, our system uses the 
same network for both synchronization and delivery tasks. 
Thus adaptive load balancing strategies are required that 
can account for both workloads. Security is another 
important issue, as we cannot fully trust the volunteer 
nodes. 

 

Fig. 2. System Design: Using Volunteer Assistance. 

To address this issue, our system requires that its customers 
first communicate with the server before contacting any of 
the volunteer nodes. As a result, the customers will be able 
to authenticate the data received from the volunteers 
through the use of MD4 checksums provided by the server.   
In addition, our approach enables the server to attempt to 
optimize the individual workloads of the volunteer nodes. 

5 O,GOI,G WORK 
We are now in the process of implementing an adaptive 
system to balance the workload among the volunteers. This 
system will exploit the information available at the tracker 
and assist the server to find out which volunteers have 
which files. Additionally, it will provide the server with 
estimates of the volunteers’ workloads and help make 
better load balancing decisions. Our simulation results 
indicate that by utilizing the information available at the 
tracker we can aptly distribute the load to the volunteer 
nodes. 

In the future, we plan to study data placement policies that 
can handle volatile volunteers. This would allow 
individuals to donate idle machine time to improve the 
software package delivery process. Our trace analysis 
indicates that by replicating only the newly released 
packages we can make use of the volatile volunteers to 
diminish the flash crowd effects. 

Our design is unique in that it combines the concept of 
volunteering with the P2P technology and is able to 
integrate with the existing system. 

REFERE,CES 
[1] Akamai white papers. On-line at: 

http://www.akamai.com/html/perspectives/whitepapers.html 
[2] D. Anderson, J. Cobb, E. Korpela, M. Lebofsky and D. Werthimer, 

SETI@home: An experiment in public-resource computing. 
Communications of the ACM, 45(11): 56–61, Nov. 2002. 

[3] B. Cohen, Incentives build robustness in BitTorrent, Proc. 1st Workshop 
on Economics of Peer-to-Peer Systems, June 2003. 

[4] M. Freedman, E. Freudenthal and D. Mazières, Democratizing content 
publication with Coral, Proc. 1st USE�IX/ACM Symp. on �etworked 
Systems Design and Implementation, Mar. 2004. 

[5] Rsync: Remote file synchronization system.  On-line at: 
http://samba.anu.edu.au/rsync/documentation.html 

[6] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad and M. 
Newbold, M. Hibler, C. Barb and A. Joglekar, An integrated 
experimental environment for distributed systems and networks, Proc. 
5th Symp. on Operating Systems Design and Implementation, Dec. 2002.

 


