
Hindawi Publishing Corporation
Advances in Multimedia
Volume 2008, Article ID 265309, 9 pages
doi:10.1155/2008/265309

Research Article
A Stream Tapping Protocol Involving Clients in
the Distribution of Videos on Demand

Santosh Kulkarni, Jehan-François Pâris, and Purvi Shah

Department of Computer Science, University of Houston, Houston, TX 77204-3010, USA

Correspondence should be addressed to Jehan-François Pâris, paris@cs.uh.edu

Received 1 May 2007; Revised 7 November 2007; Accepted 11 January 2008

Recommended by Qian Zhang

We present a stream tapping protocol that involves clients in the video distribution process. As in conventional stream tapping,
our protocol allows new clients to tap the most recent broadcast of the video they are watching. While conventional stream tapping
required the server to send to these clients the part of the video they missed, our protocol delegates this task to the clients that
are already watching the video, thus greatly reducing the workload of the server. Unlike previous solutions involving clients in the
video distribution process, our protocol works with clients that can only upload video data at a fraction of the video consumption
rate and includes a mechanism to control its network bandwidth consumption.

Copyright © 2008 Santosh Kulkarni et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. INTRODUCTION

Distributing videos on demand is a costly proposition,
mostly because of the high bandwidth requirements of the
service. Assuming that the videos are in MPEG-2 format,
each user request will require the delivery of approximately
six megabits of data per second Hence, a video server
allocating a separate stream of data to each request would
need an aggregate bandwidth of six gigabits per second to
accommodate one thousand overlapping requests.

This situation has led to numerous proposals aimed at
reducing the bandwidth requirements of VOD services.
These proposals can be broadly classified into two groups
Proposals in the first group are said to be proactive because
they distribute each video according to a fixed schedule that
is not affected by the presence—or the absence—of requests
for that video. They are also known as broadcasting protocols.
Other solutions are purely reactive: they only transmit data
in response to a specific customer request. Unlike proactive
protocols, reactive protocols do not consume bandwidth in
the absence of customer requests.

Nearly all these proposals assume a clear separation of
functions between the server, which distributes the video and
the customers, who watch it on their personal computers or

on their television sets. As a result, they cannot take advan-
tage of the upstream bandwidth of the clients to lower the
server’s workload.

The stream tapping protocol we present here is the first
protocol that can harness the collective bandwidth of clients
with limited individual upstream bandwidths As in conven-
tional stream tapping, our protocol requires the server to
start a new video broadcast whenever a client cannot get
enough video data by “tapping” a previous broadcast of
the same video. Unlike conventional stream tapping, our
protocol uses the available upstream bandwidth of previous
clients to reduce the amount of video data that the server will
still have to send to the clients that “tap” a previous broadcast
of the video As we will see, delegating these tasks to the clients
results in a dramatic reduction of the server workload at
medium to high request arrival rates.

The remainder of this paper is organized as follows
Section 2 reviews previous work Section 3 introduces our
stream tapping protocol Section 4 discusses its performance
and shows how we can limit the network bandwidth
consumption of the protocol at high arrival rates Section 5
presents a simple probabilistic model of our protocol
and Section 6 discusses its applicability to actual networks
Finally, Section 7 has our conclusions

mailto:paris@cs.uh.edu


2 Advances in Multimedia

Client a

Client b

Client c

Stream from server

Stream from customer a

Stream from server

β

β

Figure 1: How chaining works.

2. PREVIOUS WORK

Two of the earliest reactive distribution protocols are batch-
ing and piggybacking. Batching [1] reduces the bandwidth
requirements of individual user requests by multicasting
one single data stream to all customers who request the
same video at the same time. Piggybacking [2] adjusts the
display rates of overlapping requests for the same video
until their corresponding data streams can be merged into
a single stream Consider, for instance, two requests for the
same video separated by a time interval of three minutes.
Increasing the display rate of the second stream by 10 percent
will allow it to catch up with the first stream after 30 minutes.

Chaining [3] was the first video distribution protocol to
take advantage of the upstream bandwidth of its clients It
constructs chains of clients such that (a) the first client in the
chain receives its data from the server, and (b) subsequent
clients receive their data from their immediate predecessor
As a result, video data are “pipelined” through the clients
belonging to the same chain. Since chaining only requires
clients to have very small data buffers, a new chain has to be
restarted every time the time interval between two successive
clients exceeds the capacity β of the buffer of the first client
Figure 1 shows three sample client requests Since client a is
the first customer, it will get all its data from the server As
client b arrives less than β minutes after customer a, it can
receive all its data from client a Finally, client c arrives more
than β minutes after client a and must be serviced directly
by the server. Optimized chaining [4] exploits the buffers of
other clients in order to construct longer chains and reduce
the server workload.

The cooperative video distribution protocol [5] extends
the chaining protocol by taking advantage of the larger buffer
sizes of modern clients Hence, it should be better named
extended chaining If all clients have buffers large enough to
store the entire video, the server will never have to transmit
video data at more than the video consumption rate.

Stream tapping [6, 7], also known as patching [8],
requires each client set-top box to have a buffer capable of
storing at least 10 to 15 minutes of video data and to be
able to receive data at at least twice the video consumption
rate This buffer will allow the set-top box to “tap” into data
streams that were originally created for previous clients, and
then store these data until they are needed In the best case,
clients obtain most of their data from an existing stream.

Customer a

Customer b

Customer c

Complete stream

Useful part of complete stream

Tap

Useful part of complete stream

Tap Tap

Useful part of previous tap

Δb Δb

Δc Δc

Figure 2: How stream tapping works.

In particular, stream tapping defines two types of
streams. Complete streams broadcast a video in its entirety.
Full tap streams can be used if a complete stream for the same
video started β ≤ b minutes in the past, where b is the size of
the client buffer, measured in minutes of video data. In this
case, the client begins receiving the complete stream right
away, storing the data in its buffer Simultaneously, it receives
a full tap stream and uses it to display the first Δ minutes of
the video. After that, the client will consume directly from its
buffer Stream tapping also defines partial tap streams, which
can be used when Δ > β. In this case, clients must go through
cycles of filling up and then emptying their buffer, since
the buffer is not large enough to account for the complete
difference in video position.

To use tap streams, clients need only receive at most two
streams at any one time. Clients that can receive data at three
times the video consumption rate can use an option of the
protocol called extra tapping. Extra tapping allows clients
to tap data from any stream on the VOD server, and not
just from complete streams. Figure 2 shows some samples of
client requests As client a is the first client, it is serviced by a
complete stream, whose duration is equal to the duration D
of the video. Since client b arrives Δt minutes after client a,
it can share D −Δt minutes of the complete stream and only
requires a full tap of duration Δt minutes Finally, customer
c can use extra tapping to tap data from both the complete
stream and the previous full tap, and so its service time is
smaller than Δc.

Eager and Vernon’s dynamic skyscraper broadcasting
(DSB) [9] is another reactive protocol based on Hua
and Sheu’s skyscraper broadcasting protocol [10, 11] Like
skyscraper broadcasting, it never requires the STB to receive
more than two streams at the same time Their more recent
hierarchical multicast stream merging (HMSM) protocol
requires less server bandwidth than DSB to handle the same
request arrival rate [12] Its bandwidth requirements are
indeed very close to the upper bound of the minimum
bandwidth for a reactive protocol that does not require the



Santosh Kulkarni et al. 3

STB to receive more than two streams at the same time, that
is,

η2 ln
(

1 +
Ni

η2

)
, (1)

where η2 = (1 +
√

5)/2, and Ni is the request arrival rate.
Selective catching [13] combines both reactive and proac-

tive approaches. It dedicates a certain number of channels for
periodic broadcasts of videos, while using the other channels
to allow incoming requests to catch up with the current
broadcast cycle. As a result, its bandwidth requirements are
O(log(λiLi)), where λi is the request arrival rate and Li the
duration of the video.

3. OUR PROTOCOL

Both chaining and the cooperative protocol require clients
capable of sending video data at the video consumption
rate As a result, they exclude clients that have limited
upstream bandwidths, say, no more than one eighth to one
fourth of their downstream bandwidths While these clients
might be able to download video data at twice their video
consumption rate, they might only be able to forward video
data at one fourth to one half of that rate.

We wanted to develop a video distribution protocol that
allowed clients to participate in the video distribution pro-
cess even if they could only retransmit data at a fraction of the
video consumption rate [14] We thus assumed the following:

(1) clients would be able to receive video data at twic
their video consumption rate,

(2) clients would only be able to forward video data at a
rate equal to a fraction α of the same video consump-
tion rate,

(3) clients would not be able to multicast video data,

(4) clients would not have to forward video data after
they have finished watching that video,

(5) clients should have enough buffer space to store
the previously viewed portion of the video they are
watching until they have finished watching it.

As we can see, our protocol makes few demands on the
transmission capabilities of the client hardware In contrast, it
requires client buffers capable of storing an entire video, that
is, several gigabytes of compressed video data Two factors
motivated this choice First, the diminishing cost of every
kind of storage makes this requirement less onerous today
than it would have been a few years ago Second, we expected
many clients to keep the previously viewed portion of the
video they are watching in their buffers in order to provide
the equivalent of a VCR rewind feature.

Our protocol is a fairly straightforward implementation
of stream tapping without extra tapping as extra tapping
would have required clients to be able to receive videos at
three times the video consumption rate It only differs from
the original stream tapping protocol in the way it handles
its tap streams While tap streams originally were the sole
responsibility of the server, this task is now shared by the

Client a

Client b

Client c

From server

Tapping

Tapping

From a

From server

From a

From b

From server

Δt

Δt′

Tc

Figure 3: How the full tap streams are distributed among the server
and the previous clients.

server and client b. Let us consider the scenario described in
Figure 3 and focus on the request issued by client c. Let Δt′

denote the time interval between that request and a request
issued by client b, and let Tc denote the time elapsed since
the start of the last request that was serviced by a complete
stream.

(1) If Tc ≥ D, the two requests do not overlap and client
c cannot tap any data from the last complete stream As in the
original stream tapping protocol, the server will then start a
new complete stream.

(2) If Tc < D, there is an overlap between the current
request and the last complete stream As in the original stream
tapping protocol, the server will then evaluate whether it
would be more advantageous to keep tapping from the last
complete stream or to start a new one If the server decides
to keep tapping from the last complete stream, it will have
to provide client c with a full tap stream of duration Tc Two
alternatives must now be considered:

(a) if Tc ≤ D − Δt′, client b will provide a fraction α of
the full tap stream and the server the remaining 1 – α
fraction of the stream;

(b) if Tc > D − Δt′, client c will finish watching the
video before being able to transmit all its share of the
full tap stream, and will only be able to transmit a
fraction α(D−Δt′)/Tc of the full tap stream with the
server transmitting the remainder of the stream.

If the video is long enough, the new request is likely to
overlap with more than one previous request We propose
to harness the available bandwidth of the clients that issued
these requests in order to further reduce the workload of
the server. The contributions of these clients will be subject
to two restrictions. First, upstream bandwidth restrictions
prevent any client to upload data for two different clients
at the same time. Second, we will never require a client to
transmit video data after the client has finished watching the
video.



4 Advances in Multimedia

In our example, the request form client a is entirely
serviced by a complete stream coming from the server The
request from client b gets the last D−Δt minutes of the video
by tapping client a’s complete stream and the first Δt minutes
from a full tap stream of duration Δt A fraction α of this
stream will be sent by customer a, and the remaining 1 − α
fraction will come from the server Assuming that the server
decides not to start a new complete stream for customer c,
that customer would get the following.

(1) The last D−(Δt+Δt′) minutes of the video by tapping
client a’s complete stream.

(2) A fraction α of the first D− (Δt +Δt′) minutes of the
video from a tap stream sent by customer a; this tap
stream will end when customer a will finish watching
the video D − (Δt + Δt′) minutes after the arrival of
customer c.

(3) A fraction α of the first D − Δt′ minutes of the video
from a tap stream sent by customer b; this tap stream
will end when customer b will finish watching the
video D−Δt′ minutes after the arrival of customer c.

(4) The remaining portion of the first Δt + Δt′ minutes
of the video from the server.

One last issue to consider is when to halt tapping from
the current complete stream and start a new one.To achieve
this goal, our protocol keeps track of the minimum average
request service time of all requests sharing the same complete
stream Before adding a new request to a group, it computes
what would be the new average request service time of the
group if the new request was added to the group Should
this new average request service time be lesser than or equal
to the minimum average request service time of the group,
our protocol adds the new request to the group; otherwise, it
starts a new group This criterion is similar but not identical
to that used by Carter and Long [6, 7].

3.1. Handling client failures

To operate correctly, our protocol requires all clients to
forward video data to the next customers for the same video
Any client failure will deprive all subsequent customers from
their video data.

There is a simple solution to the problem Let us return
to the scenario of Figure 3, where client c receives most of its
tap stream from clients a and b, while client b receives almost
half of its tap stream from client a Any failure of either client
a or client b would immediately affect the correct flow of data
to client c A failure of client a will require the server to take
over the role of client a and send the missing video data to
clients b and c. A failure of client b would have less impact
on the server workload as it would also free client a from its
obligation to send client b a fraction of its tap stream, thus
freeing enough upstream bandwidth to let client a take over
the role of client b and send most of the missing video data
to client c Making the protocol fault tolerant will thus require
the server to keep track of which client is sending video data
to each client.

1000100101

Requests/hour

0

1

2

3

4

5

6

7

8

9

10

B
an

dw
id

th
(c

h
an

n
el

s)

New ST α = 0
Stream tapping

New ST α = 0.25
New ST α = 0.5

Figure 4: Server bandwidth requirements of the new stream
tapping protocol.

4. PERFORMANCE EVALUATION

To evaluate the performance of our new protocol, we
designed a simulator modeling the distribution of a two-
hour video assuming that request arrivals could be modeled
by a Poisson process [14]. It is based on similar simulators
used for previous papers on stream tapping and was
modified to model clients that could not forward video data
at a rate equal to the video consumption rate [15, 16].

Figure 4 displays the server bandwidth requirements of
our new stream tapping protocol for selected values of α and
request arrival rates varying between one and one thousand
requests per hour All bandwidths are expressed in multiples
of the video consumption rates In addition, the dotted line
represents the server bandwidth requirements of the original
stream tapping protocol with extra tapping Let us observe
that the comparison between the two protocols is not totally
fair since extra tapping requires clients capable of receiving
video data at three times the video consumption rate, while
our protocol only requires clients capable of receiving video
data at two times that rate.

As we can see, our new stream tapping protocol outper-
forms conventional stream tapping even when clients can
only forward data at one fourth of the video consumption
rate, that is, when α = 0.25. These results are much better
than those of an earlier version of the protocol that would
not allow clients to receive video data from more than one
client [16].

This excellent performance comes however at a stiff price
As seen in Figure 5, the network bandwidth requirements
of our stream tapping protocol increase much more rapidly
than those of the original stream tapping protocol when the
client request arrival rate exceeds ten requests per hour. This
phenomenon can be explained in part by the fact that our
protocol does not allow extra tapping A more important
factor is the way the server decides when to start a new
complete stream. Since the clients handle most of the tap
streams, adding extra requests to any existing group has a
negligible impact on the server workload As a result, the
server never starts a new complete stream before the end



Santosh Kulkarni et al. 5

1000100101

Requests/hour

0

100

200

300

400

500

600

700

800

900

1000

B
an

dw
id

th
(c

h
an

n
el

s)

New ST α = 0.5
New ST α = 0.25

New ST α = 0
Stream tapping

Figure 5: Network bandwidth requirements of the new stream
tapping protocol.

of the previous one. Thus the average duration of a tap
stream is equal to half the duration of the video and the
average network bandwidth is roughly equal to one half the
bandwidth required by a unicast scheme.

A simplistic solution to this problem would be to limit
the size of the tap streams to a fraction βmax of the duration
of the video. This would reduce the average duration of these
streams and proportionally reduce the network bandwidth.
This solution would however affect the performance of the
protocol at low-arrival rates, where long tap streams are the
norm Having investigated several other options, we found
out that the best way to limit the growth of the network
bandwidth was to limit the size of the tap streams at high
arrival rates. At the same time, we did not want to complicate
the design of the server by requiring it to maintain some
moving average of the request arrival rates for each video.

We decided instead to use as threshold the number of
clients sharing the same complete stream and force the server
to start a new complete stream whenever (a) the size of the
tap stream would otherwise exceed a fraction βmax o the
duration of the video, and (b) more than Nmax requests were
already sharing the current complete stream.

Figures 6 and 7 display the impact of this modification
to the server and network bandwidth of our protocol. We
considered clients capable of uploading data at one-fourth
the video consumption rate and set our βmax to 0.25. Each
individual curve corresponds to a different value of Nmax.
We see that limiting the tap stream length to one quarter of
the video duration reduces by a factor of four the network
bandwidth of the protocol, while increasing the server
bandwidth at the highest arrival rates by the same factor.
Even under these conditions, the server bandwidth remains
well below that of the original stream tapping protocol.

5. AN ANALYTICAL MODEL

As in a previous paper [17], we consider stream tapping
without extra tapping for a video of duration D that is being

1000100101

Requests/hour

0

1

2

3

4

5

6

7

8

9

10

B
an

dw
id

th
(c

h
an

n
el

s)

Nmax = 10
Nmax = 100
No limit

Figure 6: Server bandwidth requirements of the protocol for α =
0.25, and βmax = 0.25.

1000100101

Requests/hour

0

100

200

300

400

500

600

700

800

900

1000
B

an
dw

id
th

(c
h

an
n

el
s)

No limit
Nmax = 100
Nmax = 10

Figure 7: Network bandwidth requirements of the protocol for α =
0.25, and βmax = 0.25.

accessed at a rate λ. We assume that we will restart a new
complete stream whenever the length of the next full tap
exceeds βD, where 0 < β ≤ 1 is a parameter to be determined.

In other words, we will wait for an incoming request, start
a complete stream of duration D, tap this stream over a time
interval of duration βD, then restart the process.

During this time interval, the server will process an
average of λβD requests in addition to the request that
prompted the complete stream Hence the average number
of requests sharing the same complete stream is

navg = 1 + λβD. (2)

Since the lengths of the λβD full tap streams in the
group will be uniformly distributed over the interval (0,
βD], the average duration of each of these streams will be



6 Advances in Multimedia

equal to βD/2 The total duration of the streams required for
processing these 1 + λβD requests will thus be

W = D + (λβD)
(
βD

2

)
= D +

λβ2D2

2
. (3)

We define the average service time Tavg for the requests
in a group as the total duration W of the streams required
for processing these requests divided by the number navg of
requests in the group We will then have

Tavg = W

navg
= D + λβ2D2/2

1 + λβD
. (4)

Our protocol assumes that previous clients will share
with the server the task of sending the full tap streams Let
γ ≤1 denote the fraction of the tap streams that the clients
will be able to send. This fraction γ will depend both on the
factor α characterizing the upload bandwidth of the clients
and the existence of previous clients whose requests overlap
with the current requests. As the request arrival increases, the
number of these clients will also increase, which will allow
them to send a larger fraction γ of the tap streams.

For a given value of γ, the contribution of the server to
the average request service time will be

Ts,avg = D + (1− γ)λβ2D2/2
1 + λβD

, (5)

and that of the previous clients will be

Tc,avg = γλβ2D2/2
1 + λβD

. (6)

To find the value βopt of the coefficient β that minimizes
the server workload, we differentiate (5) with respect to β,
obtaining

(1− γ)λβD2(1 + λβD)− λD
(
D + (1− γ)λβ2D2/2

)
(1 + λβD)2 , (7)

the only positive root of which

βopt =
√

2λD(1− γ) + (1− γ)2 − (1− γ)

λD(1− γ)
. (8)

When γ equals zero, clients do not participate in the sending
of full tap streams and (5) reverts to

βopt =
√

2λD + 1− 1
λD

. (9)

When γ equals 1, clients handle all full tap streams, the server
only handles the complete streams, and βopt goes to infinity
As a result, the server will never start a new complete stream
before the end of the previous one, and the server bandwidth
Bs,ST will never exceed one channel.

To estimate the total bandwidth requirements of the
clients when γ = 1, let us consider, let us consider an interval
of duration 2D starting with the beginning of a new complete
stream During this time interval, the system will receive

1000100101

Requests/hour

0

1

2

3

4

5

6

7

8

9

10

B
an

dw
id

th
(c

h
an

n
el

s)

New ST α = 0
New ST α = 0.25
New ST α = 0.5

Model γ = α = 0
Model γ = 1

Figure 8: Server bandwidth requirements of the new stream
tapping protocol.

an average of 2λD requests in addition to the request that
prompted the complete stream and the clients will send an
average of 2λD full tap streams. Since the lengths of these full
tap streams will be uniformly distributed over the interval
(0, D), the average duration of each of these streams will be
equal to D/2 The total duration of these streams will thus be

Wc = (2λD)
(
D

2

)
= λD2. (10)

The average bandwidth Bc,ST used by the clients to send
full taps streams is then given by dividing this expression by
the duration of the considered interval,

Bc,ST = Wc

2D
= λD

2
. (11)

The total network bandwidth requirements BST of our
protocol are obtained by adding the average bandwidth Bs,ST

used by the server to that expression As we can see in
Figure 4, Bs,ST is very close to on for large values of λ. We
can thus approximate BST as

BST = Bc,ST + Bs,ST ≈ λD

2
+ 1. (12)

Compare these requirements with those of a video
distribution scheme that does not use any form of multicast
Over an interval of duration T, it will handle an average of
λT requests. Since each request will be serviced by a separate
stream of duration D, the total duration of these streams
will be λDT, and the average bandwidth requirements of
the scheme would be λD, that is, almost twice the average
bandwidth BST requirements of our cooperative stream
tapping protocol.

Figures 8 and 9 compare our analytical results with our
simulation results We considered the two limit cases when γ
= 0 and γ = 1 As we can see, both models predict identical
network bandwidths for all values of α and all arrival rates.

This is not the case for server bandwidths Both models
are in substantial agreement when either α = 0 or α ≥0.5 and
disagree when 0 < α < 0.5 Let us consider these three cases.



Santosh Kulkarni et al. 7

1000100101

Requests (hr)

0

100

200

300

400

500

600

700

800

900

1000

B
an

dw
id

th
(c

h
an

n
el

s)

New ST α = 0.5
New ST α = 0.25
New ST α = 0

Model α /= 0
Model α = 0

Figure 9: Network bandwidth requirements of the new stream
tapping protocol.

(1) α = 0

When α = 0, the clients cannot upload video data Hence, γ =
0 and both models predict identical network bandwidths.

(2) α ≥ 0.5

When α ≥ 0.5, the clients can upload video data at at least
half the video consumption rate. As a result, they can handle
most, if not all, of the tap streams, and their share γ of
the stream tapping data is close to one. This is less true for
request arrival rates below 20 requests per hour, where the
server must still handle a small fraction of the tap streams.

(3) 0 < α < 0.5

When 0 < α < 0.5, the clients have very limited upload
bandwidths They participate in the distribution of tap
streams but cannot fully substitute for the server as long as
the request arrival rate remains below 60 requests per hour
As a result, 0 < γ <1 and the actual server bandwidth stands
somewhere between the values predicted for γ = 0 and γ = 1.

Let us turn now our attention to the performance of
the scheme reducing the network bandwidth consumption
of our protocol at high arrival rates Recall that this scheme
consisted of starting a new complete stream whenever (a) the
size of the tap stream would otherwise exceed a fraction βmax

of the duration of the video, and (b) more than Nmax requests
were already sharing the current complete stream.

On the average, this scheme will take effect whenever the
request arrival rate λ will exceed a threshold,

λ∗ = Nmax

βmaxD
. (13)

At higher arrival rates, the server will restart a new
complete stream of duration each βmaxD time units Its
bandwidth requirements will thus be equal to 1/βmax As a

1000100101

Requests/hour

0

1

2

3

4

5

6

7

8

9

10

B
an

dw
id

th
(c

h
an

n
el

s)

Model
Nmax = 100

Figure 10: Server bandwidth requirements of the protocol for α =
0.25, βmax = 0.25, and Nmax = 100.

result, the average bandwidth requirements of the server will
be

Bs,ST =

⎧⎪⎪⎨
⎪⎪⎩

1 for λ < λ∗,

1
βmax

for λ ≥ λ∗.
(14)

Let us now focus on the behavior of clients at arrival rates
greater than or equal to λmax Assuming again that the clients
will handle all full tap streams, they will send an average of
λβmaxD full tap streams each βmaxD time units The average
length of these tap streams will be equal to βmaxD/2, and the
average bandwidth Bc,ST used by the client will be

Bc,ST =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λD

2
for λ < λ∗,

λβmaxD

2
for λ ≥ λ∗.

(15)

Figures 10 and 11 compare our analytical results with our
simulation results for α = 0.25, βmax = 0.25, and Nmax = 100
As before, both models predict identical or near identical
network bandwidths for all values of α and all arrival rates
This is not the case for the server bandwidth Here again our
analytical model underestimates the server bandwidth when
the request arrival rate remains below 60 requests per hour
because it incorrectly assumes that the clients can handle all
tap streams.

We can thus say that the results of our probabilistic anal-
ysis confirm those obtained through our simulation study
and conclude that our cooperative stream tapping protocol
can effectively harness the collective upload bandwidth of its
clients even when each individual client cannot upload video
data at more than one quarter of the video consumption
In addition, requiring the server to restart complete streams
at fixed intervals provides an effective tool for limiting the
network bandwidth consumption of the protocol.



8 Advances in Multimedia

1000100101

Requests/hour

0

100

200

300

B
an

dw
id

th
(c

h
an

n
el

s)

Nmax = 100
Model

Figure 11: Network bandwidth requirements of the protocol for α
= 0.25, βmax = 0.25, and Nmax = 100.

6. PROTOCOL APPLICABILITY

Many organizations such as universities and companies run
their own multicast-capable networks Consider the example
of a local telephone company that decides to increase its ser-
vice offerings to include on-demand video entertainment
Many of their existing clients are already subscribed to
their high-speed internet access by means of DSL With our
solution, the telephone company can make use of their mult-
icast-enabled infrastructure to deliver videos on demand to a
large number of clients at very low cost.

7. CONCLUSIONS

We have presented a stream tapping protocol that involves
clients in the video distribution process Our protocol is
tailored to multicast-capable environments where client
machines are able to download video data at twice the video
consumption rate but cannot necessarily forward video data
at that rate. We observed that our technique achieved a
dramatic reduction of the server workload at medium to high
request arrival rates but also resulted in much higher network
bandwidth consumptions. These increases can however be
controlled by requiring the server to restart complete streams
at some specific intervals Even then, the server bandwidth
requirements of the protocol remain well below those of pure
client-server solutions.

Our proposal differs from conventional peer-to-peer
(P2P) solutions in two different ways First, it assumes the
existence of one or more servers capable of multicasting
video data at twice to four times the video consumption rate
This allows the protocol to make much more efficient use
of the network bandwidth as a single video stream can be
broadcast to an arbitrary number of clients Second, it does
not require peers to be able to upload video data at more than
one quarter to one half of their video consumption rates,
which would not be possible in a pure P2P solution such
as [18] In pure P2P systems, the download rate is positively
correlated to the upload rate Legout et al. [19] illustrated

through experiments that the amount of data uploaded is
very close to the data downloaded in P2P systems such as
BitTorrent [20]. Thus, to sustain a video streaming service,
a peer should have an upload rate at least equal the video
consumption rate.

Stream tapping protocol involving clients is a very
good solution, especially over local networks as it provides
a scalable way to distribute on-demand high-bandwidth
videos streams without overtaxing the network bandwidth.

REFERENCES

[1] A. Dan, P. Shahabuddin, D. Sitaram, and D. Towsley, Channel
allocation under batching and VCR control in video-on-
demand systems, Journal of Parallel and Distributed Comput-
ing, vol. 30, no. 2, pp. 168179, 1995.

[2] L. Golubchik, J. C. S. Lui, and R. R. Muntz, Adaptive
piggybacking: a novel technique for data sharing in video-on-
demand storage servers, Multimedia Systems, vol. 4, no. 3, pp.
140155, 1996.

[3] S. Sheu, K. A. Hua, and W. Tavanapong, Chaining: a gener-
alized batching technique for video-on-demand systems, in
Proceedings of the IEEE International Conference on Multimedia
Computing and Systems (ICMCS ’97), pp. 110117, Ottawa,
Ontario, Canada, June 1997.

[4] T.-C. Su, S.-Y. Huang, C.-L. Chan, and J.-S. Wang, Optimal
chaining scheme for video-on-demand applications on collab-
orative networks, IEEE Transactions on Multimedia, vol. 7, no.
5, pp. 972980, 2005.

[5] J.-F. Pâris, A cooperative distribution protocol for video-
on-demand, in Proceedings of the 6th Mexican International
Conference on Computer Science (ENC ’05), pp. 240246,
Puebla, Mexico, September 2005.

[6] S. W. Carter and D. D. E. Long, Improving video-on-demand
server efficiency through stream tapping, in Proceedings of
the 6th International Conference on Computer Communications
and Networks (ICCCN ’97), pp. 200207, Las Vegas, Nev, USA,
September 1997.

[7] S. W. Carter and D. D. E. Long, Improving bandwidth
efficiency of video-on-demand servers, Computer Networks,
vol. 31, no. 1-2, pp. 111123, 1999.

[8] K. A. Hua, Y. Cai, and S. Sheu, Patching: a multicast technique
for true video-on-demand services, in Proceedings of the 6th
ACM International Conference on Multimedia, pp. 191200,
Bristol, UK, September 1998.

[9] D. L. Eager and M. K. Vernon, Dynamic skyscraper broadcast
for video-on-demand, in Proceedings of the 4th International
Workshop on Advances in Multimedia Information Systems, pp.
1832, Istanbul, Turkey, September 1998.

[10] K. A. Hua and S. Sheu, Skyscraper broadcasting: a new broad-
casting scheme for metropolitan video-on-demand systems,
in Proceedings of the ACM SIGCOMM Conference on Appli-
cations, Technologies, Architectures, and Protocols for Computer
Communication (SIGCOMM ’97), pp. 89100, Cannes, France,
September 1997.

[11] K. A. Hua and S. Sheu, An efficient periodic broadcast
technique for digital video libraries, Multimedia Tools and
Applications, vol. 10, no. 2-3, pp. 157177, 2000.

[12] D. L. Eager, M. K. Vernon, and J. Zahorjan, Minimizing
bandwidth requirements for on-demand data delivery, in
Proceedings of the 5th International Workshop on Advances in
Multimedia Information Systems, Indian Wells, Calif, USA,
October 1999.



Santosh Kulkarni et al. 9

[13] L. Gao, Z.-L. Zhang, and D. Towsley, Catching and selective
catching: efficient latency reduction techniques for delivering
continuous multimedia streams, in Proceedings of the 7th ACM
International Conference on Multimedia, pp. 203206, Orlando,
Fla, USA, October 1999.

[14] S. Kulkarni and J.-F. Pâris, Involving clients in the distribution
of videos on demand, in Proceedings of the IEEE International
Conference on Multimedia and Expo (ICME ’06), pp. 16771680,
Toronto, Ontario, Canada, July 2006.

[15] J.-F. Pâris, A stream tapping protocol with partial preloading,
in Proceedings of the 9th IEEE International Symposium on
Modeling, Analysis, and Simulation of Computer and Telecom-
munication Systems (MASCOTS ’01), pp. 423430, Cincinnati,
Ohio, USA, August 2001.

[16] J.-F Pâris, Using available client bandwidth to reduce the
distribution costs of video-on-demand services, in Proceedings
of the 7th Workshop on Distributed Data and Structures (WDAS
’06), Santa Clara, Calif, USA, January 2006.

[17] J.-F. Pâris and D. D. E. Long, An analytic study of stream
tapping protocols, in Proceedings of the IEEE International
Conference on Multimedia and Expo (ICME ’06), pp. 12371240,
Toronto, Ontario, Canada, July 2006.

[18] P. Shah and J.-F. Pâris, Peer-to-peer multimedia streaming
using BitTorrent, in Proceedings of the 26th IEEE International
Performance, Computing, and Communications Conference
(IPCCC ’07), pp. 340347, New Orleans, La, USA, April 2007.

[19] A. Legout, G. Urvoy-Keller, and P. Michiardi, Understanding
BitTorrent: an experimental perspective, Tech. Rep. inria-
00000156, INRIA, Sophia Antipolis, France, 2005.

[20] B. Cohen, Incentive-build robustness in BitTorrent, in Pro-
ceedings of the 1st Workshop on Economics of Peer-to-Peer
Systems, Berkeley, Calif, USA, June 2003.


	Introduction
	Previous Work
	Our Protocol
	Handling client failures

	Performance Evaluation
	AN ANALYTICAL MODEL
	(1) = 0
	(2) 0.5
	(3) 0<<0.5


	Protocol AppliCABILITY
	Conclusions
	References

