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Abstract—While mean time to data loss (MTTDL) provides 
an easy way to estimate the reliability of redundant disk arrays, 
it fails to take into account the relatively short lifetime of these 
arrays.  We analyzed five different disk array organizations and 
compared the reliability estimates obtained using their mean 
times to data loss with the more exact values obtained by 
directly solving their corresponding Markov model.  We 
observed that the conventional MTTDL approach generally 
provided a good estimate of the long-term reliability of arrays—
with the exception of non-repairable arrays—while significantly 
underestimating the short-term reliability of these arrays. 12 

I.  INTRODUCTION 

A critical issue for any large data storage system is how to 
ensure the survival of the data in the presence of equipment 
failures.  Given the limitations of backup solutions, the best 
way to achieve this goal is to use redundant storage systems.  
Two techniques that can be used are mirroring and erasure 
coding.  Mirroring maintains two or more identical copies of 
the data on distinct disks.  Erasure codes, also known as m-
out-of-n codes, group disks into sets of n disks that contain 
enough redundant information to tolerate the loss of n – m 
disks.  Their best-known implementation is RAID level 3 and 
5, which use n – 1-out-of-n codes [2, 3]. 

Adding redundancy to a storage system incurs additional 
costs both in terms of extra storage space and additional 
update complexity. Since these costs vary widely among all 
the possible options, it is important to be able to evaluate the 
survival rate that a given storage system can achieve over 
time. 

The most popular tool for characterizing the reliability of a 
storage solution is its mean time to data loss (MTTDL).  It 
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offers the two advantages of being simple to compute and 
easy to understand, but as we will see, it also has a major 
limitation.  MTTDLs characterize fairly well the behavior of 
a disk array that would remain in service until it fails without 
being ever replaced for any reason other than a device failure.  
In reality, disk arrays have much shorter lifetimes and are 
typically replaced five to seven years after their initial 
deployment.  As a result, most redundant disk arrays will be 
replaced before they experience any data loss due to a failed 
disk. 

Rather than relying on MTTDLs, we should instead focus 
on characterizing the reliability of disk arrays during their 
useful lifetime.  Two recent studies of disk array reliability 
[4, 5] have addressed this issue and included data loss 
predictions obtained through a direct solution of the system 
of differential equations that characterize the stochastic 
behavior of each storage system. 

We present the first comparison between these new 
figures and those obtained through the conventional MTTDL 
approach.  The disk arrays considered in our study include 
mirrored and triplicate disks both with and without repairs 
and a RAID level 5 array consisting of ten disks. The main 
conclusion of our study is that the conventional MTTDL 
approach generally provides good estimates of the long-term 
reliability of repairable disk arrays, but significantly 
underestimates their short-term reliability. 

II. MIRRORED AND TRIPLICATE DISKS  

The first storage organizations we considered were arrays 
consisting of one, two or three disks, each holding an 
identical copy of the same data.  We distinguished disk arrays 
that could not be repaired after a disk failure from arrays that 
would be promptly repaired after each disk failure. 
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Fig. 1.  State transition probability diagram for mirrored and 

triplicate disks that are never repaired. 

A. First Case: The Disks Cannot Be Repaired 
As in almost all studies of disk array reliability, we will 

assume that disk failures are independent events, 
exponentially distributed with failure rate λ. 

The survival function S1(t) of a single disk at time t is 
given by the differential equation 

)()(' 11 tStS λ−=  
with the initial condition 1)0(1 =S . 

Its solution is 
)exp()(1 ttS λ−= . 

We model the survival function S2(t) of a pair of mirrored 
disks using the standard Markov model depicted on the top of 
Fig. 1.  We label the non-failure states by the number of 
operational disks.  The starting state is state 2, from which we 
transition to state 1 at rate 2λ, whenever one of the two disks 
fails.  We can capture the probability pi(t) of being in state i 
at time t in a system of ordinary differential equations 
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The survival S2(t) of our pair a mirrored disks is  
)12()()()( 2

122 −=+= − tt eetptptS λλ . 
To estimate the MTTDL of our system, we first compute 

the Laplace transforms of its system of differential equations 
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Observing that the mean time to data loss (MTTDL) of the 
array is given by  

)0(MTTDL *∑=
i

ip , 

we obtain 

λλλ 2
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The bottom Markov model in Fig. 1 describes the case of 
triplicate disks.  Its system of differential equations is 

TABLE I 
ECONOMIC LIFESPANS OF SINGLE DISKS, MIRRORED DISKS AND TRIPLICATE 
DISKS WITHOUT REPAIRS. 

Nines Simple Mirrored Triple 
2 0.01005 0.10536 0.24265 
3 0.00100 0.03213 0.10536 
4 1.00E-04 0.01005 0.04753 
5 1.00E-05 0.00317 0.02178 
    

TABLE II. 
THE SAME ECONOMIC LIFESPANS COMPUTED USING THE MTTDLS OF THE 
ARRAYS. 

Nines Simple Mirrored Triple 
2 0.01005 0.01508 0.01843 
3 0.00100 0.00150 0.001831 
4 1.00E-04 0.00015 0.000183 
5 1.00E-05 1.501E-05 1.83E-05 
    

)()(2)('
)(2)(3)('

)(3)('

121

232

33

tptptp
tptptp

tptp

λλ
λλ

λ

−=
−=

−=
  

with initial conditions  

0)0(
0)0(
1)0(

1

2

3

=
=
=

p
p
p

 

Solving the system gives us its survival function 
)1  33 ()()()()( 23
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Similarly, we find out that the MTTDL of the triplicate 
disks is 
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We define the economic lifespan L(r) of an array as the 
maximum time interval for which data stored on that array 
will have a probability r to survive intact.  In other words, 
L(r) is the solution of Sn(t) = r.  In addition we express L(r) in 
multiples of the disk MTTF (1/λ) to obtain dimensionless 
values.  Table I displays the economic lifespans of simple, 
mirrored and triplicate disks for reliability levels r equal to 
0.99, 0.999, 0.9999, and 0.99999, that is, 2, 3, 4, and 5 nines.  

To obtain the same values from our estimates of the array 
MTTDLs, we assume that the array failure rate λn will remain 
equal to 1/MTTDL over the lifetime of the array and obtain  

)
MTTDL

exp()( ttSn −= . 

As we can see from Table II, the economic lifespans of 
mirrored and triplicate disks computed from their MTTDL 
are much lower than those obtained by directly solving the 
model.  From Equations (1), we see that the actual hazard rate 
of the pair of mirrored disks 



 
Fig. 2.  Reliability of a pair of mirrored disks that cannot be repaired. 
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is initially equal to zero and reaches its maximum for 
t = (log 2)/λ while the hazard rate we computed from its 
MTTDL 

)exp(1)(1
MTTDL

t
MTTDL

tS
MTTDL n −= , 

is a monotonically decreasing function. 
Fig. 2 compares the reliabilities obtained through the two 

techniques.  As we can see, reliability figures that we 
obtained assuming a constant hazard rate are much lower 
than the actual figures during an initial period roughly equal 
to the disk MTTF.  This is a fairly large time interval if we 
consider that most estimates of disk MTTFs fall between ten 
and thirty years depending on their working environments.  
Very few disk arrays last that long before getting replaced. 

One way to obtain better estimates of the economic 
lifespan of disk arrays would be to change the way we 
compute their MTTDLs.  Instead of considering the whole 
potential lifetime of the array, we should compute the array 
MTTDL over a shorter observation period To.  To achieve 
this goal, we will assume that disk arrays will be replaced at a 
rate ν = 1/To. 

Fig. 3 displays the state transition probability diagrams of 
mirrored and triplicate disks that are never repaired but 
periodically replaced at a rate ν.  These diagrams are identical 
to the diagrams of Fig. 1 but for the new transitions of rate ν 
returning to state <0> from all other states. 

Solving the systems of differential equations of the two 
models, we obtain: 
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Fig. 3.  State transition probability diagram for mirrored and 

triplicate disks that are never repaired and periodically replaced. 

TABLE III. 
MTTDL-BASED ESTIMATES OF THE ECONOMIC LIFESPANS OF SINGLE DISKS, 
MIRRORED DISKS AND TRIPLICATE DISKS ASSUMING THAT FAILED DISKS DO 
NOT GET REPLACED BUT ARRAYS GET PERIODICALLY REPLACED AT A RATE 
EQUAL TO THE INVERSE OF THEIR ECONOMIC LIFESPANS. 

Nines Simple Mirrored Triple 
2 0.01005 0.07883 0.15299 
3 0.00100 0.02313 0.06175 
4 1.00E-04 0.00715 0.02691 
5 1.00E-05 0.00224 0.01223 
    

for the triplicate disk organization. 
We then used these expressions to compute the economic 

lifespans L(r) of the two arrays.  Since we wanted to focus on 
the behaviors of the arrays within their economic lifespans, 
we set their replacement rates equal to 1/L(r) using a simple 
iterative technique. Table III summarizes our results.  As we 
can see, our estimates of the economic lifespans of mirrored 
and triplicate disks still underestimate the values we obtained 
by directly solving their differential equations but are now 
much closer to these values.  The new estimates of the 
economic lifespans of the pair of mirrored disks are 25 to 30 
percent lower than their true values while the new estimates 
of the economic lifespans of the triplicate disks are 35 to 45 
percent lower than their true values. 

B. Second case: the disks can be repaired 
Let us consider the case where failed disks are promptly 

replaced after each disk failure and assume that disk repair 
times are exponentially distributed with rate μ. 

We model the survival function S2(t) of a pair of 
repairable mirrored disks using the Markov model depicted in 
Fig. 4.  Solving its system of differential equations, we 
obtain: 
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Fig. 4.  State transition probability diagram for a pair of mirrored disks when 

failed disks are promptly replaced. 

TABLE IV 
ECONOMIC LIFESPANS OF REPAIRABLE MIRRORED DISKS FOR VARIOUS REPAIR 
RATE RATIOS μ/λ. 

Nines μ/λ = 103 μ/λ  = 104 μ/λ  = 105 

2 5.04123 50.2669 502.532 

3 0.50275 5.00410 50.0265 
4 0.05115 0.50028 5.00041 
5 0.00601 0.05012 0.50003 
6 0.00120 0.00510 0.05001 

    
TABLE V 

THE SAME ECONOMIC LIFESPANS COMPUTED USING THE MTTDLS OF THE 
ARRAYS. 

Nines μ/λ  = 103 μ/λ  = 104 μ/λ  = 105 

2 5.040243 50.26675 502.5319 
3 0.501751 5.004002 50.02652 
4 0.050150 0.500175 5.000400 
5 0.005015 0.050015 0.500018 
6 0.000502 0.005001 0.050002 

    

where )6(1 μμ ++=R . 
Table IV displays the economic lifespans for various 

numbers of nines and selected values of μ/λ between 103 and 
105. A closer look at Table IV shows that increasing this μ/λ 
ratio by 100 yields about the same increase in the economic 
lifespan.   

Table V displays the same economic life spans computed 
using the MTTDL of the array.  As we can see, they are in 
fairly good agreement with the values obtained by directly 
solving the model.  The sole significant discrepancies occur 
when computing economic lifespans less than 0.01 times the 
disk MTTF.  Given that disk MTTFs are likely to vary 
between 100,000 and 300,000 hours [6-8], this threshold 
corresponds to economic lifespans varying between one 
thousand and three thousand hours. 

Similarly, the MTTDL of the mirrored disks is  

22
+3MTTDL
λ
μλ

= . 

The main reason for this better agreement is the existence 
of a repair transition from state <1> to state <2>, which 
rapidly brings the array back to its original state.  Since this 
process is likely to be repeated many times over the array 
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Fig. 5.  State transition probability diagram for a RAID level 5 array 

with ten disks. 

TABLE VI 
ECONOMIC LIFESPANS FOR A REPAIRABLE RAID LEVEL 5 DISK ARRAY WITH 
TEN DISKS ASSUMING  λ = 1 AND VARIOUS REPAIR RATE RATIOS μ/λ. 

Nines μ/λ = 103 μ/λ = 104 μ/λ = 105 

2 0.114800 1.119000 11.16920 
3 0.012300 0.111500 1.111890 
4 0.001984 0.011230 0.111100 
5 0.000512 0.001213 0.011120 
6 0.000153 0.000197 0.001121 
  

TABLE VII 
THE SAME ECONOMIC LIFESPANS COMPUTED USING THE MTTDLS OF THE 
ARRAYS. 

Nines μ/λ  = 103 μ/λ = 104 μ/λ = 105 

2 0.113792 1.118826 11.16916 
3 0.011328 0.111378 1.111878 
4 0.001137 0.011133 0.111137 
5 0.000113 0.001113 0.011113 
6 0.000011 0.000111 0.001111 
  

lifetime, it brings the average hazard rate of the mirrored 
disks closer to the rate directly computed from the differential 
equations of the system. 

In addition, we can see that the most serious discrepancies 
occur when μ/λ = 103, which is a fairly low repair rate to 
failure rate ratio.  Observe first that the MTTFs of individual 
disks are at least 100,000 hours, which correspond to a disk 
failure rate of 10-5 failures per hour.  A repair rate to failure 
rate ratio of 103 implies a disk repair rate of 10-2 repairs per 
hour, which corresponds to a mean disk repair time of 
slightly more than four days.   

III.  RAID ARRAYS 

We can apply the same approach to estimate the reliability 
of a RAID level 5 array consisting of ten devices. Solving the 
Markov model of Fig. 5, we obtain its survival function 
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and its mean time to data loss 
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Table VI displays the economic life spans of our RAID 
array obtained by directly solving the model and Table VII 
displays the same results computed using the MTTDL of the 
array.  As we observed for the repairable mirrored disks, the 
sole significant discrepancies between the two sets of values 
occur for very small economic lifespans and are the most 
pronounced when μ/λ = 103.  This should be expected as the 
error introduced by assuming a constant hazard rate is the 
greatest for very small lifespans and low repair rate to failure 
rate ratios tend to produce these lifespans. 

IV.  DISCUSSION 

We have considered very simple disk arrays so far and 
would like to know how the difference between the true and 
the constant hazard rate reliability is affected by the size of 
the disk arrays.  As an example, we consider a system of 20 
identical components that can withstand up to 3 failures and 
thus needs 17 functioning components.  Proceeding just as 
before, we obtain the survival rate  

( ) ( ) ( ) ⎟
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⎝
⎛ −+−+−+= − 3220
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and for the MTTDL 

λ58140
12617M 20/17 =TTDL . 

We present the now widely different survival rates in Fig. 
6.   

We now investigate our intuition further by investigating 
systems of n components such that failure of 1, up to 2, up to 
3, or up to 4 components constitute system failure. 
Accordingly, we call these systems 1, 2, 3, or 4 components 
failure-resilient. Examples for such systems are declustered 
disk arrays [1, 9].  Fig. 7 gives the Markov model for the case 
of a 4 components failure-resilient system. We calculated the 
survival probability Si,n for these systems where i stands for 
the degree of resilience and n for the number of components.  
We then developed the Taylor series of the resulting 
expressions and obtained: 
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We calculate economic lifetimes by solving for t in 
Si,n(t) = r with r ≈ 1. As a result, the absence of terms of rank 
smaller than i in the Taylor series explains why we cannot 
approximate Si,n(t) with a survival function with constan t 
hazard rate for i ≥ 2, since that survival function would have 
a  non-zero  l inear  component  in  the  Taylor  ser ies .  

 
Fig. 6.  True and constant hazard rate survival rate of the 17/20 disk array. 

 
Fig. 7: Markov model of a four-component failure-resilient system 

without repairs. 

TABLE VIII 
ECONOMIC LIFESPAN AT FOUR NINES OF A THREE-COMPONENT FAILURE-
RESILIENT REPAIRABLE DISK ARRAY WITH TEN DISKS. 

μ/λ Economic Lifespan 
10 0.009853 

100 0.012771 
1000 0.283207 

10000 27.81820 
  

Graphically, the absence of terms of rank smaller than i in 
Si,n(t) shows itself in the flatness of the curve near t = 0.   

These results also hold for repairable systems.  In fact, the 
same Taylor series developments hold for repairable systems 
that are 1, 2, or 3 components failure-resilient.  However, in 
this case, the magnitude of the coefficient of ti+1 is so large 
that using only the constant and the lowest-order member of 
the Taylor series is only justified for a reliability level r so 
close to 1 that it is of little practical use.  To illustrate the fact, 
we give the economic lifespan of a 3 component failure-
resilient system of 10 components in Table VIII, assuming a 
survival probability of 99.99% (four nines).  As we can see, 
the lifespan depends heavily on the repair rate.  To keep our 
table dimensionless, we set the component failure rate λ to 1. 
In fact, the Taylor series of S3,n

repair(t) up to a t4 is: 
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The following coefficients are even larger, showing that 
approximation by Taylor series is not a feasible approach to 
calculate economic lifespans. 

V.  CONCLUSION 

While MTTDLs provide an easy way to estimate the 
reliability of redundant disk arrays, they do not take into 
account the relatively short lifetime of these arrays and tend 
to overestimate the probability of a data loss over this 
lifetime.  We analyzed five different disk array organizations 
and compared the reliability estimates obtained using their 
MTTDLs with the more exact values obtained by directly 
solving their Markov model.  We observed that the MTTDL 
approach grossly underestimated the reliability of non-
repairable redundant disk arrays and proposed a technique 
reducing the margin of error by assuming that the disk array 
was replaced at frequent intervals.  In contrast, we found out 
that the same MTTDL approach provided fairly good 
estimates of the reliability of repairable redundant disk arrays 
as long as the individual disk repair rate remained well above 
one thousand times the individual disk failure rate. 

These findings raise the important question of how to 
evaluate the reliability of complex redundant disk arrays that 
are not promptly repaired within hours of a disk failure.  
Since the systems of differential equations describing the 
behavior of these systems are likely to be intractable, extant 
analytic tools will not be able to evaluate the correctness of 
any MTTDL-based estimate of their reliability.  The best 
alternative will be to turn to discrete simulation techniques, a 
step we plan to take in the near future. 
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