
A Proactive Implementation of Interactive Video-on-Demand

Jehan-François Pâris
Department of Computer Science

University of Houston
Houston, TX 77204-3010

paris@cs.uh.edu

Darrell D. E. Long
Department of Computer Science

University of California
Santa Cruz, CA 95064

darrell@cse.ucsc.edu

Abstract

Most broadcasting protocols for video-on-demand do
not allow the customer to pause, move fast-forward or
backward while watching a video. We propose a broad-
casting protocol implementing these features in a purely
proactive fashion.12

Our protocol implements rewind and pause interac-
tions at the set-top box level by requiring the set-top box
to keep in its buffer all video data it has received from the
server until the customer has finished watching the video.
It implements fast-forward by letting the video server
transmit video data more frequently than needed by
customers watching the video in sequence. As a result,
any customer having watched the first x minutes of a
video will be able to fast-forward to any scene within the
first 2x or 3x minutes of the video. We show that this
expanding horizon feature can be provided at a
reasonable cost.

We also show how our protocol can accommodate
customers connected to the service through a device
lacking either the ability to receive data at more than two
times the video consumption rate or the storage space
required to store more than 20 to 25 percent of the video
they are watching. While these customers will not have
access to any of the interactive features provided by our
protocol, they will be able to watch videos after the same
wait time as all other customers.

1. INTRODUCTION

Broadcasting protocols offer the best solution for the
successful deployment of metropolitan video-on-demand

1 Supported in part by the Texas Advanced Research

Program under grant 003652-0124-1999 and the
National Science Foundation under grant CCR-
9988390.

2 Supported in part by the National Science Foundation
under grant CCR-9988363.

(VOD) services because they provide the most efficient
way to distribute very popular videos to very large
audiences and these so-called “hot” videos are expected to
account for the majority of customer requests. Rather
than reacting to individual viewer requests, broadcasting
protocols distribute the contents of videos according to a
fixed schedule guaranteeing that all customers will
receive these contents on time. As a result, the number of
customers watching a given video does not affect the
server workload.

All recent VOD broadcasting protocols derive in some
way from Viswanathan and Imielinski’s pyramid broad-
casting protocol [15]. Like it, they assume that most, if
not all, users will watch each video in a strictly sequential
fashion. These protocols also require customers to be
connected to the service through a “smart” set-top box
(STB) capable of (a) receiving data at rates exceeding the
video consumption rate and (b) storing locally the video
data that arrive out of sequence. In the current state of
storage technology, this implies having a disk drive in
each STB, a device already present in the so-called digital
VCR’s offered by TiVo [14], Replay [13] and Ultimate
TV [14].

With the sole exception of staggered broadcasting, all
broadcasting protocols share the common limitation of not
offering any interactive action capability. Unlike VCRs,
they do not provide controls allowing the viewers to pause
the video and interrupt its viewing, to move fast-forward
or backward (rewind). They require instead the viewers
to watch each video in sequence as in a theater.

While staggered broadcasting provides some interac-
tive control capability, it only allows viewers to jump
from one staggered stream to another [1]. The sole
advantage of this solution is its simplicity. Its major dis-
advantages are its high bandwidth requirements and its
lack of precision: given a video of duration D distributed
over k broadcasting channels, staggered broadcasting only
allows users to move forward or backward in increments
of D/k times units.

Two more recent works [4, 10] have proposed a better
solution, namely adding interactive controls to an

existing broadcasting protocol and, preferably, to one
having much lower bandwidth requirements than stag-
gered broadcasting. Observe first that any efficient
broadcasting protocol requires a disk drive in each
customer STB. Today’s cheapest disk drives have
capacities of at least 10 gigabytes, giving them the possi-
bility of storing at least three and a half hours of video in
MPEG-2 format. One of the authors [10] proposed to
keep in the customer STB all video data until the cus-
tomer has watched the entire video. This would allow the
STB to handle locally all pause and rewind commands
while contingent streams would transmit on demand the
missing video data. Hu [4] proposed to broadcast each
video segment at a period that is x time units less than
their maximum broadcasting period in order to allow fast
forwards of up to x time units.

Both proposals have their disadvantages. Using con-
tingent streams introduces a reactive component in the
video server, complicating its design and making the
whole scheme less scalable. Decreasing by a fixed quan-
tity the broadcasting period of all segments could be quite
costly unless we settle for a small decrement and a small
fast forward horizon.

Our proposal does not suffer from these limitations.
Like Hu’s proposal, it is entirely proactive and does not
require contingent streams. Our major difference is that
we decrease the broadcasting period of all segments by a
constant factor to allow any customer having watched the
first x minutes of a video to fast forward to any scene
within the first 2x or 3x minutes of the video. This
expanding horizon approach, as we would like to call it,
offers two major advantages. First, it provides users with
a fast-forward horizon that will quickly exceed that
provided by a protocol using a fixed horizon. Second, it
is cheaper to implement.

The remainder of the paper is organized as follows.
Section 2 reviews relevant previous work on broadcasting
protocols. Section 3 presents a theoretical analysis of our
approach. Section 4 presents a fixed-delay broadcasting
protocol allowing fast forward to an expanding horizon
and discusses its advantages and disadvantages. Finally,
Section 5 has our conclusions.

2. PREVIOUS WORK

Given the large number of video broadcasting proto-
cols that have been proposed since Viswanathan and
Imielinski’s pyramid broadcasting protocol, we will only
mention those protocols that are directly relevant to our
work. The reader interested in a more comprehensive
review of broadcasting protocols for video-on-demand
may want to consult reference [2].

First Channel S1 S1 S1 S1 S1 S1

Second Channel S2 S3 S2 S3 S2 S3

Third Channel S4 S5 S6 S7 S4 S5

Figure 1. The first three channels for the FB protocol

The simplest broadcasting protocol is Juhn and Tseng's
fast broadcasting (FB) protocol [5]. The FB protocol
allocates to each video k data channels whose bandwidths
are all equal to the video consumption rate b. It then
partitions each video into 2k-1 segments, S1 to S2

k-1, of
equal duration d. As Figure 1 indicates, the first channel
continuously rebroadcasts segment S1, the second channel
transmits segments S2 and S3, and the third channel trans-
mits segments S4 to S7. More generally, channel j with
1 ≤ j ≤ k transmits segments S2

j-1 to S2
j
–1.

When customers want to watch a video, they wait until
the beginning of the next transmission of segment S1.
They then start watching that segment while their STB
starts downloading data from all other channels. Hence
the maximum customer waiting time is equal to the dura-
tion of a segment. Define a slot as a time interval equal to
the duration of a segment. To prove the correctness of the
FB protocol, we need only to observe that each segment Si
with 1 ≤ i ≤ 2k–1 is rebroadcast at least once every i slot.
Then any client STB starting to receive data from all
broadcasting channels will always receive all segments on
time.

The FB protocol does not require customer STBs to
wait for any minimum amount of time. As a result, there
is no point in requiring customer STBs to start
downloading data while customers are still waiting for the
beginning of the video. The newer fixed-delay pagoda
broadcasting (FDPB) protocol [11] requires all users to
wait for a fixed delay w before watching the video they
have selected. This waiting time is normally a multiple m
of the segment duration d. As a result, the FDPB protocol
can partition each video into much smaller segments than
FB with the same number of channels. Since these
smaller segments can be packed much more effectively
into the k channels assigned to the video, the FDPB proto-
col achieves smaller customer waiting times than an FB
protocol with the same number of channels.
Table I summarizes the segment-to-channel mappings of a
FDPB protocol requiring customers to wait for exactly 9
times the duration of a segment. Since customers have to
wait for 9 times that duration, the first segment of the
video will need to be broadcast at least once every 9 slots.
Hence the protocol will use time division multiplexing to
partition the first channel into √9 subchannels with each
subchannel containing one third of the slots of the

Table I. The first five channels for a FDPB protocol with m = 9

Channel Subchannel First
Segment

Last
Segment

1 S1 S3

2 S4 S7 C1
3 S8 S12

C2 All 5 subchannels S13 S42

C3 All 7 subchannels S43 S116

C4 All 11 subchannels S117 S308

C5 All 17 subchannels S309 S814

channel. The first subchannel will continuously broadcast
segments S1 to S3 ensuring that these segments are
repeated exactly once every 9 slots.

Observe that the next segment to be broadcast, seg-
ment S4 needs to be broadcast once every 12 slots. Hence
the second subchannel will transmit segments S4 to S7
ensuring that these segments are repeated exactly once
every 12 slots. In the same way, the third subchannel will
broadcast segments S8 to S12 ensuring that these segments
are repeated exactly once every 15 slots.

The process will be repeated for each of the following
channels partitioning each channel into a number of
subchannels close to the square root of the minimum
periodicity of the lowest numbered segment to be broad-
cast by the channel. Hence channel C2 will be partitioned
into 5 subchannels because segment S13 needs to be

repeated every 21 slots and 215 ≈ . As a result, the
protocol will map segments S13 to S42 into the 5 subchan-
nels of the second channel. Repeating the same process
on channels C3 to C5, the protocol will be able to map 814
segments into five channels and achieve a deterministic
waiting time of 9/814 of the duration of the video, that is,
80 seconds for a two-hour video.

Most research on interactive video-on-demand has
focused on reactive video distribution protocols. Li et al.
proposed in 1996 to use contingent streams to handle
interactive VOD operations [7]. More recent work has
focused on minimizing the duration of these contingent
streams by merging them as soon as possible with other
streams [3, 6, 8, 9]. Poon et al. have proposed a single-
rate multicast double-rate unicast protocol supporting full
VCR functionality [12].

3. THEORETICAL ANALYSIS

In this section, we derive lower bounds for the band-
width requirements of fixed-delay broadcasting protocols
allowing a limited amount of fast forwarding.

To compute these lower bounds, let us consider first
the case of a broadcasting protocol not allowing any fast
forwarding. Let D represent the duration of the video and
w the duration of the fixed delay all customers must wait
for before starting to watch the video. Consider t a small
time interval ∆t starting at an offset t within the video. To
avoid STB underflow, the contents of this time interval
must be broadcast at a minimum bandwidth)/(wtb +
where b is the video consumption rate.

Summing over all intervals as ∆t approaches 0, we see
that the bandwidth required to transmit the video is given
by:

w

wD
bwwDbdt

wt

bD +=−+=
+� ln)ln)(ln(

0

x (1)

Assume now that the protocol allows customers to
fast-forward up to x time units ahead of their current
position. The contents of each small interval ∆t starting at
a location t within the video will have to be broadcast at a
minimum bandwidth)/(xwtb −+ . The minimum
bandwidth required to transmit the video is now given by:

xw

xwD
bwxwDbdt

xwt

bD

−
−+=−−+=

−+� ln)ln)(ln(
0

Observe that x cannot be greater than or equal to w and
that the minimum bandwidth required to broadcast the
video goes to infinity when x approaches w. Given that
we expect w to be of the order of a few minutes, we can
see that no broadcasting protocol will ever be able to
provide a fixed fast forward horizon of any significant
duration.

Consider now a broadcasting protocol allowing cus-
tomers who have already watched the first x minutes of a
video to fast forward to any scene within the first fx min-
utes of the video. The contents of each small interval ∆t
starting at an offset t within the video will have to be
broadcast at a minimum bandwidth

fwt

bf

w
f

t
b

+
=

+
.

The minimum bandwidth required to transmit the
video is now given by:

w

wfD
fbfwfwDfbdt

fwt

fbD +=−+=
+�

/
ln)ln)(ln(

0

 (2)

Slots 1 2 3 4 5 6 7 8 9 10 11 12

First subchannel S1 S2 S3 …

Second subchannel S4 S5 S6 …

Third subchannel S7 S8 S9 S10

Figure 2. How the protocol maps its first channel

In essence, broadcasting a video of duration D in a way
that allows customers who have already watched the first
x minutes of a video to fast forward to any scene within
the first fx minutes of the video requires the same band-
width as broadcasting a video of duration D/f with a video
consumption rate fb.

Subtracting equation (1) from equation (2), we obtain
the overhead of implementing a fast forward horizon
growing at a rate f:

w

wfD
bf

wDw

wfD
b

w

wD
b

w

wfD
fb

f

f

+−<

+
+=+−+

−

/
ln)1(

)(

)/(
lnln

/
ln

1

This overhead will always be less than f – 1 times the
bandwidth required to broadcast a video of duration D/f
with a video consumption rate b. This result is not as
strong as it appears because the minimum bandwidth
required to broadcast a given video is not that sensitive to
the duration of that video. Consider, for instance a one-
hour video and let us assume that we want a customer
delay of 4 minutes. The minimum bandwidth required to
broadcast this video will be given by b ln(64 / 4), that is,
2.77 times the video consumption rate. Broadcasting a
two-hour video with the same customer delay would
require a bandwidth equal to b ln(124 / 4), that is, 3.43
times the video consumption rate.

One way to decrease the cost of implementing fast-
forward with an expanding horizon would be to disallow
fast forward during the first few minutes of the video.
This would allow us to broadcast the first few segments of
the video at their normal frequency instead of at a multiple
f of that frequency. The savings could be considerable as
the first segments of a video are the ones that require the
most bandwidth. Conversely, a broadcasting protocol
with a fast forward horizon expanding at an increasing
rate as the customer watches the video could be imple-
mented at a reasonable additional cost as the later
segments of a video require much less bandwidth as its
first segments.

4. IMPLEMENTATION

We present in this section a broadcasting protocol
allowing customers who have watched the first x minutes
of a video to fast forward to any scene within the first 2x
minutes of the video. In other words, its fast forward
horizon will expand at a fixed rate f = 2. We decided to
base our protocol on the fixed-delay pagoda broadcasting
(FDPB) protocol discussed in section 2 because it has
bandwidth requirements that are fairly close to the
theoretical minimum.

We will consider a video of duration D to be broadcast
over k channels Cj with 1 ≤ j ≤ k. The bandwidths of these
k channels will all be equal to the video consumption rate
b. The protocol will partition each video into n equal-size
segments of duration d = D/n. These n segments will be
broadcast at different frequencies over the k channels,
each segment transmission occupying a slot of duration d.
The broadcast schedule will allow customers who have
been watching the video for at least x minutes to fast
forward to any scene within the first fx minutes of that
video.

As in the example of section 3, we will assume m = 9,
which means that each customer will have to wait for a
time equal to the duration of 9 videos.

Consider segment S1, that is, the first segment of the
video. To guarantee its on-time arrival, it needs to be
broadcast at least once every m slots. This will also allow
any kind of fast forwarding within that segment. The next
segment, segment S2, must become accessible as soon as
customers have finished watching the first half of segment
S1. Hence it will also need to be broadcast at least once
every 9 slots. The following segment is segment S3. It
must become accessible as soon as customers have fin-
ished watching segment S1 and will need to be broadcast
at least once every 10 slots. Segment S4 will need to be
broadcast at the same frequency as segment S3 since it
must become accessible as soon as customers have fin-
ished watching the first half of segment S2. More
generally segment Si with 1 ≤ i ≤ n will need to be broad-
cast at least once every m + � i/f – 1� slots, which will
guarantee that customers will be able to fast forward to it
as soon as they have watched the first i/f segments of the
video.

Table II. The first eight channels for a FDPB protocol with m = 9
and a fast forward horizon expanding at a rate f = 2

Channel Subchannel First
Segment

Last
Segment

1 S1 S3

2 S4 S6 C1

3 S7 S10

1 S11 S17
C2

2 S18 S25

1 S26 S32

2 S33 S40 C3

3 S41 S49

1 S50 S60

2 S61 S73 C4

3 S74 S88

C5 All 6 subchannels S89 S151

C6 All 6 subchannels S152 S252

C7 All 7 subchannels S253 S417

C8 All 12 subchannels S418 S688

As the original FDPB protocol, our protocol will parti-

tion each channel Cj into sj subchannels in such a way that
each subchannel will occupy 1/sj of the slots of channel
Cj. Looking at Figure 2, we see that the first channel is
partitioned into 3 subchannels. The first of these sub-
channels broadcasts segments S1 to S3 ensuring that these
segments will be repeated once every 9 slots. The first
segment to be broadcast by the second subchannel is seg-
ment S4, which needs to be broadcast every ten slots.
Since the second subchannel has only one-third of the
slots of its channel, it can only broadcast segments at peri-
ods that are multiples of three of the slot size. Hence it
will broadcast segments S4 to S6 once every 9 slots. The
first segment to be broadcast by the third subchannel is
segment S7, which needs to be broadcast once every 12
slots. As a result, the third subchannel will broadcast
segments S7 to S10.

The first segment to be broadcast by the second chan-
nel is thus segment S11, which needs to be broadcast every
9 + 5 = 14 slots. Recall that the original FDPB protocol
partitioned each channel into a number of subchannels
close to the square root of the minimum period of all
segments to be broadcast by this channel. Our new proto-
col uses a slightly different approach: the number of
subchannels into which a channel will be partitioned is
obtained by considering all possible values of sk and
selecting the one mapping the most segments into the

channel. As a result, the second channel will be
partitioned into two subchannels, one broadcasting
segments S11 to S17 and the other segments S18 to S25.

Table II summarizes the final segment-to-channel
mappings for the first 8 channels. As one can see allo-
cating 8 channels to a video allows us to partition the
video into 688 segments and achieve a waiting time of
9/688 of the video duration, that is 94 seconds for a two-
hour video. Recall that the original FDPB protocol with
the same value of m only needed 5 channels to achieve a
maximum waiting time of 80 seconds for the same two-
hour. Hence allowing customers who have watched the
first x minutes of a video to fast forward to any scene
within the first 2x minutes of the video will require three
extra channels.

We believe that broadcasting these three additional
channels will require less computing and networking
resources than implementing contingent streams with the
client/server interactions these streams would require.

There are two additional benefits in implementing fast
forward by transmitting more frequently video segments.
First, we observe that most high-numbered segments will
be transmitted twice to between the time the customers
order the video and the time they actually watch that seg-
ment. Hence a STB receiving the first time a damaged
segment would have a second chance to receive a working
segment. Second, transmitting segments more frequently
would also help customers who are connected to the ser-
vice through a device lacking either the ability to receive
data at more than two times the video consumption rate or
the storage space required to store 40 to 50 percent of the
video they are watching.

Limiting the Client Bandwidth to Two Channels

Let us show first how our protocol can handle custom-
ers connected to the video-on-demand service through a
device that cannot receive data at more than twice the
video consumption rate. Our protocol will let these
customers watch videos after the same wait time as all
other customers but will not let them fast-forward.

We will always start counting slots from the time cus-
tomers order the video. Hence we will say that segment
S1 will need to be in the customer STB by the end of the
9th slot and, more generally that segment Si will need to be
in the customer STB by the end of the i + 8th slot.

Recall that our protocol transmits all segments—but
the first one—at a higher frequency than the original
FDPB protocol. Hence the STB of a customer not inter-
ested in the fast forward feature will not need to receive
data from all channels at the same time. Consider, for
instance, the case of the second channel. As Tables II and
III show, channel C2 broadcasts segments S11 to S25. Seg-
ment S11 is repeated every 14 slots and segment S25 is
repeated every 16 slots. Note that segment S11 must reach

Table III. Minimum and maximum periodicities of the segments
broadcast by a FDPB protocol with m = 9 and a fast-forward
horizon expanding at a rate f = 2

Channel
First

Segment
Last

Segment

Shortest
Period
(slots)

Longest
Period
(slots)

C1 S1 S9 9 12

C2 S11 S25 14 16

C3 S26 S49 21 27

C4 S50 S49 33 45

C5 S89 S151 48 78

C6 S152 S252 84 120

C7 S253 S417 133 203

C8 S418 S688 216 336

the customer STB by the time the customer has finished
watching segment S10, that is, by the end of the 19th slot.
Hence the customer STB can wait for 5 slots before start-
ing to receive data from channel C2. Since segment S25 is
repeated every 16 slots, the STB will then stop receiving
data from channel C2 after 5 + 16 = 21 slots.

Consider now channel C3. It broadcasts segments S26
to S25. Segment S26 is repeated every 21 slots and needs to
reach the customer STB before the end of the 34th slot.
Hence it can be safely delayed by 13 slots, that is, after the
STB will have received the first 10 segments of the video
from channel C1. Since segment S49 is repeated every 27
slots, the STB will then stop receiving data from channel
C2 after 13 + 27 = 21 slots.

We can apply the same reasoning to all successive
channels and we will see the STB will never have to start
receiving data from channel Ci+2 before it has finished
receiving data from channel Ci. Hence the STB of a cus-
tomer not interested in fast-forwarding through the video
will never have to receive data from the video server on
more than two channels at a time.

Reducing the Client Buffer Size Requirements
Delaying segment reception from successive channels

will also impact the maximum amount of video data to be
stored in the STB buffer. As we stated earlier the STB of
a customer wanting to experience the interactive features
provided by our protocol will require a buffer capable of
storing each video being watched in its entirety.

Disabling these interactive features and delaying as
much as possible segment reception will result in much
lower storage requirements because the STB will not have
to keep in its buffer any segment that has been viewed by
the customer. As a result, the number of segments kept in
the STB buffer will reach its maximum when the STB
finishes receiving data from the next to last channel. This
number will remain constant as long as the STB receives
data from all the subchannels of the last channel and will
then start decreasing after that.

As shown in Table III, the first subchannel of any
channel has always the shortest period of any subchannel
in that channel. We can thus estimate the minimum
storage requirements of our protocol by measuring the
number of segments in the buffer when the STB has just
finished receiving data from the first subchannel of the
last channel.

Assume that the last channel is channel Ck and that it
contains sk subchannels. Let then Sz be the first segment
to be broadcast by channel Ck. Since Sz must be repeated
at least once every m + � z/f – 1� slots, the first subchannel
of Ck will contain exactly � (m + � z/f – 1�)/sk � segments.
By the time the STB will finish receiving data from that
subchannel, it will have in its buffer a total of
sk×� (m + � z/f – 1�)/sk � segments from all sk subchannels of
the last channel. Looking at Table III, we see that the first
segments of the last channel are repeated once every 266
slots. Hence the STB will stop receiving data from the
first subchannel of the last channel after having received
216 segments from that channel. The STB will thus
never hold more than 216 of the 688 of the segments
constituting the video, that is, 31.4 percent of the video.
More generally, the STB will never have to hold more
than 32 percent of the video when the video is broadcast
on 7 or more channels.

Further reductions in client buffer size requirements
could be achieved by limiting the number of segments that
can be broadcast by any channel. If no channel broadcasts
more than nmax distinct segments, each segment will be
repeated at least once every nmax slot and the customer
STB will never have to store more than nmax segments.

Consider, for instance a variant of our protocol not
allowing any channel to broadcast more than 100
channels. Channels C6 to C8 would now only broadcast
100 channels each. Assuming the same values of the m
and f parameters, the protocol would only be able to
broadcast 451 segments over 8 channels. As a result it
would only achieve a waiting time of 144 seconds but
would require the customer STB to store less than 100/451
or 22.2 percent of the video.

5. CONCLUSION

Broadcasting protocols for video-on-demand typically
require customers to watch videos in sequence and do not

allow them to pause, move fast-forward or backward
while watching a video.

We have presented a pagoda broadcasting protocol over-
coming these limitations without requiring contingent
streams. Hence it does not suffer the same scalability
limitations as protocols involving contingent streams. Our
protocol implements rewind and pause interactions by
requiring the set-top box to keep in its buffer all video
data it has received from the server until the customer has
finished watching the video. It implements fast-forward
by letting the video server transmit video data more
frequently than needed by customers watching the video
in sequence. As a result, any customer having watched
the first x minutes of a video will be able to fast-forward
to any scene within the first 2x or 3x minutes of the video.
As we have seen, this expanding horizon feature can be
provided at the cost of three additional channels per video.

We have also shown how our protocol can accommodate
customers connected to the service through a device
lacking either the ability to receive data at more than two
times the video consumption rate or the storage space
required to store more than 20 to 25 percent of the video
they are watching. While these customers will not have
access to any of the interactive features provided by our
protocol, they will be able to watch videos after the same
wait time as all other customers.

REFERENCES

[1] K. C. Almeroth and M. H. Ammar, The use of
multicast delivery to provide a scalable and inter-
active video-on-demand service. IEEE Journal on
Selected Areas in Communications, 14(50):1110–
1122, Aug. 1996

[2] S. W. Carter, D. D. E Long and J.-F. Pâris, Video-
on-demand broadcasting protocols, In Multimedia
Communications: Directions and Innovations (J. D.
Gibson, Ed.), Academic Press, San Diego, 2000,
pages 179–189.

[3] S. W. Carter, D. D. E Long and J.-F. Pâris, An
efficient implementation of interactive video-on-
demand, Proc. 8th International Symposium on
Modeling, Analysis and Simulation of Computer
and Telecommunication Systems, pages 172–179,
San Francisco, CA, Aug.-Sept. 2000.

[4] A. Hu, Video-on-demand broadcasting protocols: a
comprehensive study. Proc. IEEE INFOCOM
2001, Vol. 1, pages 508–517, Anchorage, AK,
April 2001.

[5] L. Juhn and L. Tseng. Fast data broadcasting and
receiving scheme for popular video service. IEEE
Transactions on Broadcasting, 44(1):100–105,
March 1998.

[6] N. Kamiyama and V. O. K. Li, An efficient
deterministic bandwidth allocation method in
interactive video-on-demand systems. Proc. 1998
Global Communication Conference, vol. 2, pages
664–671, Nov. 1998.

[7] V. O. K. Li , W. Liao , X. Qiu , and E. Wang,
."Performance model of interactive video-on-
demand systems. IEEE Journal on Selected Areas
in Communications, 14(6):1099–1109, Aug1996.

[8] W. Liao and V. O. K. Li, The split-and-merge
(SAM) protocol for interactive video-on-demand
systems. IEEE Multimedia 4(4): 51–62, 1997.

[9] W. Liao, V. O. K. Li: Synchronization of distrib-
uted multimedia systems with user interactions,
Multimedia Systems 6(3): 196–205, 1998.

[10] J.-F. Pâris, An interactive broadcasting protocol for
video-on-demand, Proc. 20th International
Performance of Computers and Communication
Conference (IPCCC ‘01), pages 347–353,Phoenix,
AZ, April 2001.

[11] J.-F. Pâris. A fixed-delay broadcasting protocol for
video-on-demand, Proc. 10th International
Conference on Computer Communications and
Networks (ICCCN ‘01), pages 418–423, Scottsdale,
AZ, Oct. 2001.

[12] W.-F. Poon, K.-T. Lo and J. Feng, "Design and
analysis of multicast delivery to provide VCR
functionality in video-on-demand systems," In
Proceedings of the 2nd International Conference on
ATM, pages 132–139, June 1999.

[13] ReplayTV. http://www.replay.com/.

[14] TiVo Technologies. http://www.tivo.com/.

[14] UltimateTV. http://www.ultimatetv.com/.

[15] S. Viswanathan and T. Imielinski. Metropolitan
area video-on-demand service using pyramid
broadcasting. Multimedia Systems, 4(4):197–208,

