
Accelerated Chaining: A Better Way to Harness
Peer Power in Video-on-Demand Applications

Jehan-François Pâris
Department of Computer Science

University of Houston
Houston, TX 77204-3010

+1 713-743-3341

paris@cs.uh.edu

Ahmed Amer
Department of Computer Engineering

Santa Clara University
Santa Clara, CA 95053

+1 408-551-6064

a.amer@acm.org

Darrell D. E. Long
Department of Computer Science

University of California
Santa Cruz, CA 95064

+1 831-459-2616

darrell@cs.ucsc.edu

ABSTRACT
We present a more efficient chaining protocol for video-on-
demand applications. Chaining protocols require each client to
forward the video data it receives to the next client watching the
same video. Unlike all extant chaining protocols, our protocol
requires these clients to forward these data at a rate slightly higher
than the video consumption rate. Our simulations indicate that
increasing the client video forwarding rate by 5 percent is suffi-
cient to virtually eliminate the server workload for a two-hour
video when request arrival rates remain above 30 requests per
hour

Categories and Subject Descriptors
H.5.1 [Information Systems] INFORMATION INTERFACES
AND PRESENTATION — Multimedia Information Systems.

General Terms
Algorithms, Performance, Design.

Keywords
P2P, Streaming, Video-on-demand.

1. INTRODUCTION
One of the major impediments to the wider development of video-
on-demand (VOD) services is their high bandwidth requirements.
Assuming that the videos are in MPEG-2 format, each user
request will require the delivery of around six megabits of data
per second. Hence a video server allocating a separate stream of
data to each request would need an aggregate bandwidth of six
gigabits per second to accommodate one thousand concurrent
clients.
This situation has led to numerous proposals aimed at reducing
the bandwidth requirements of VOD services. These proposals
can be broadly classified into two groups. Proposals in the first
group assume that servers can multicast data to several clients at

the same time. For instance, batching [6] delays requests for a
popular video in order to form batches of requests that can be
serviced with a single video stream. Pyramid broadcasting [16]
and stream tapping [4] are more sophisticated examples of the
same approach. While these schemes can provide very impres-
sive bandwidth savings, they only apply to networks supporting
multicast, which is not the case for the vast majority of systems
on the Internet [1].
Proposals in the second group require clients to participate in the
video distribution process [3, 17]. In essence, their approach is
the same as that of peer-to-peer (P2P) file sharing systems such as
Gnutella [7] or BitTorrent [5]. By letting clients serve each other,
P2P solutions overcome many limitations of traditional client-
server architectures. They can handle flash crowds (that is, very
large and sudden surges of demand) as well as overcome the
bandwidth limitations of the server. In addition, P2P solutions do
not require any special support from the network, be it IP multi-
cast or any specific content distribution infrastructure. At the
same time, they present some important differences from P2P file
sharing systems [2, 12].
First, existing file sharing systems do not account for the real-time
needs of streaming applications. As they do not download video
data in sequence, these data remain unusable until the download is
complete.
Second, these real-time needs require unidirectional data transfers
among clients in addition to data exchanges between pairs of
clients: the clients that are already watching the video will
forward their video data to more recently arrived clients without
receiving any video data from them. As a result, tit-for-tat
policies clearly do not apply.
Chaining [13] is the oldest P2P protocol for VOD. It organizes
all clients watching a video into chains where each client
forwards the video data it receives to the next client in the chain.
Since the original protocol assumed that clients did not have
enough buffer space to store an entire video, it did not perform as
well at low request arrival rates as at higher rates. While this
limitation has been addressed in two more recent protocols [8,
11], the actual performance of all chaining protocols is still
affected by client departures. Experience has shown that most
clients will disconnect and stop forwarding data once they have
finished playing the video. As a result, the next client will have to
receive the missing data from the server. Accelerated chaining
addresses these concerns by requiring clients to forward their
video data at a rate slightly higher than their video consumption
rate. As we will see, even very small increases of this forwarding

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SAC’11, March 21-25, 2011, TaiChung, Taiwan.
Copyright 2011 ACM 978-1-4503-0113-8/11/03…$10.00.

534

Client A

Client B

Client C

Stream from server

β

Stream from client A

Stream from server

β

Figure 1. How chaining works.

rate have a dramatic impact on the server workload. To give an
example, increasing the peer forwarding rate by as little as 5
percent will virtually eliminate the server workload for a two-hour
video whenever the request arrival rate exceeds 30 requests per
hour.
The remainder of the paper is organized as follows. Section 2
reviews previous work on chaining protocols. Section 3
introduces our protocol, Section 4 discusses its performance and
Section 5 investigates an alternative implementation for small
portable devices. Finally, Section 6 offers our conclusions.

2. PREVIOUS WORK
For brevity’s sake, we will focus our discussion on the distri-
bution protocols that are directly relevant to our work, and refer
the reader to the work of Liu et al. [9] for a more general survey.
Standard chaining [13] constructs chains of clients such that (a)
the first client in the chain receives its data from the server and (b)
subsequent clients in the chain receive their data from their
immediate predecessor. As a result, video data are in some way
“pipelined” through the clients belonging to the same chain.
Since standard chaining only requires clients to have very small
data buffers, a new chain has to be restarted every time the time
interval between two successive clients exceeds the capacity β of
the buffer of the first client. Figure 1 shows three sample
customer requests. Since customer A is the first customer, it will
get all its data from the server. As customer B arrives less than β
minutes after customer A, it can receive all its data from customer
A. Finally customer C arrives more than β minutes after customer
B and must be serviced directly by the server.
The main weakness of standard chaining is its poor performance
at low arrival rates, that is, whenever the mean time between
consecutive requests exceeds β minutes. Extended chaining [13]
takes into account the maximum time clients are willing to wait
and delays some requests in order to produce chains of requests
where consecutive requests are separated by less than β minutes.
Advanced chaining [8] proposes to bridge the gap between
requests separated by more than β minutes by inserting idle peers
that will relay the data. Optimal chaining [14, 15] addresses the
same issue by managing all client buffers as a single shared
resource. As a result, clients can “borrow” the buffers of other
clients in order to bridge gaps between incoming requests. The
protocol can also integrate streaming proxies in order to increase
chain responsiveness and resiliency.

From serverClient A

From client AClient B

From client BClient C

To client A To B To CSERVER

From server

Δt

Δt’

From server

Figure 2. How the cooperative protocol works.

0

1

2

3

4

5

6

7

8

1 10 100 1000
Requests/hour

Se
rv

er
 b

an
dw

id
th

 (c
ha

nn
el

s)

Cooperative protocol
Chaining with a 6 minute buffer
Chaining with a 15 minute buffer
Chaining with a 30 minute buffer
Chaining with a one-hour buffer

Figure 3. Comparing the required server bandwidths of the
cooperative protocol with that of chaining at various buffer

sizes.

The cooperative video distribution protocol, also known as
expanded chaining [11] extends the chaining protocol by taking
advantage of the larger buffer sizes of modern clients and requires
them to keep in their buffers the previously watched portion of the
video. At the same time, it assumes that clients will disconnect
and stop forwarding data once they have finished playing the
video. In the cooperative protocol, each client forwards to its
immediate successor video data starting with the beginning of the
video at the same rate it consumes them. When a client has
finished playing a video, it will disconnect itself and will stop
forwarding video data to its successor in the chain, thus forcing
the server to transmit the missing part of the video.
Consider for instance how the protocol would handle the three
requests displayed in Figure 2 for a video of duration D. The first
request to the video will be entirely serviced by the server. Since
client B’s request arrives while the first request is still being
serviced, the server will thus instruct client A to forward the first
D – Δt minutes of the video to the client B and schedule a trans-
mission of the last Δt minutes of the video to the same client at a
later time. When client C's request arrives, the server will simi-
larly order client B to forward the first D – Δt' minutes of the
video to the client C and schedule a transmission of the last Δt'
minutes of the video to the same client.

535

From serverClient A

From client AClient B

From client BClient C

To client A To CSERVER

From server

Δt

Δt’

Figure 4. How accelerated chaining works.

More generally, the amount of time spent by the server to service
a request will always be given by min(D, Δt), where D is the
duration of the video and Δt is the time interval between the
request being serviced and its immediate predecessor. Since the
service times of these requests will never overlap, the server
instantaneous bandwidth will never exceed the video consumption
rate.

3. ACCELERATED CHAINING
Figure 3 compares the server bandwidth requirements of the
cooperative protocol with that of the chaining protocol for various
buffer sizes. The x-axis indicates the request arrival rates in
requests per hour on a logarithmic scale while the y-axis expresses
the server bandwidths in multiples of the video consumption rate.
The video duration was assumed to be two hours, which is not far
from the average duration of a full-length movie.
As we can see, the cooperative protocol performs much better
than chaining at low-to-medium request arrival rates. This should
be expected because the chaining protocol must restart a new
chain every time two consecutive requests are separated by more
than β minutes.
Conversely, chaining performs better than the cooperative proto-
col at high arrival rates. In fact, the server workload is
completely eliminated whenever the time interval between two
consecutive requests remains below β minutes. We must however
observe that this excellent performance is based on the assump-
tion that clients will always keep forwarding data to their
successor in the chain after they have finished playing the video.
We do not believe that clients will do so and assume instead that
most clients will disconnect once they have played the video. In
addition, a significant number of clients will disconnect without
having played the full video.
Our accelerated chaining protocol overcomes this limitation by
requiring clients to forward video data to their successor in the
chain at a slightly higher rate than the video consumption rate,
say, between one and ten percent faster.
Let b denote the video consumption rate and ba > b the acceler-
ated video forwarding rate. We define the forwarding
acceleration factor f of the video as

bbf a= .

Forwarding a video of duration D at the accelerated video
forwarding rate ba will then take D /f time units.

Consider now a pair of consecutive clients that are separated by a
time interval Δt. The second client will be able to get the entire
video from the first client as long as

tDfD Δ−≤ ,

that is, as long as

f

fDt 1−
≤Δ , (1)

or

tD

Df
Δ−

≥ , (2)

Consider for instance how the protocol would handle the three
requests displayed in Figure 3 for a video of duration D. The first
request to the video will be entirely serviced by the server.
Assuming that the time interval Δt between the first and the
second request satisfies Equation (1), client B will receive all its
video data from client A. Assuming that the time interval Δt'
between the second and the third request does not satisfy
Equation (1), the server will instruct client B to forward the first f

(D – Δt’) minutes of the video to client C and schedule a transmis-
sion of the last D – f (D – Δt') minutes of the video to the same
client.
More formally, let us consider a video of duration D and a request
for that video from a customer C arriving at the server at time t.
Let Δt denote the time interval between that request and the last
request for the same video and let B designate the customer who
issued that last request. Define

f
fDt 1* −

=Δ ,

where f is the video acceleration factor.
Accelerated chaining will operate in the following fashion:

1. If Δt ≥ D, there is no overlap between the two requests; the
server will then initiate a transmission of the full video,
starting at time t and ending at time t + D.

2. If Δt ≤ Δt*, there is a sufficient overlap between the current
request and the previous request to allow client C to get all
its video data from client B.

3. If Δt* < Δt < D, client C will receive the first
f (D – Δt) minutes of that video from client B and the last
D – f (D – Δt) minutes of the video directly from the server.
This transmission will start at time t + f (D – Δt) and end at
time t + D.

3.1 Implementation Issues
While accelerated chaining greatly reduces the server workload at
high arrival rates, is does not eliminate it. The server will mostly
act as a dispatcher instructing clients when and where to forward
video data and at which rate.
Another important server task will be handling client disconnec-
tion. To operate correctly, our protocol requires all clients in a
chain to forward the video data they have received to the next
customer in the chain. As a result, any client disconnection will
deprive all subsequent clients from their video data. This is
clearly not an acceptable state of affairs.

536

There is a simple solution to the problem. Consider for instance
the scenario of Figure 4 where client C receives most of its video
data from client B, which receives all its video data from
customer A. Should client B stops forwarding data to client C,
client C will immediately notify the server. In such a situation,
one of the following two cases would apply:
1. If the disconnection happens while client A is still playing

the video, the server will order client A to stop forwarding
data to client B and forward them instead to client C. As a
result, client C will get the first f (D – (Δt + Δt')) minutes of
the video from clients A and B. In addition, the server will
cancel its scheduled transmission to client B and replace it by
a transmission of the last D – f (D – (Δt + Δt')) minutes of the
video to client C.

2. If the disconnection happens after client A has finished
playing the video, the server will cease transmitting any data
to client B and start transmitting the missing video data to
client C.

3.2 Implementing interactive controls
Requiring client buffers to be able to store an entire video greatly
simplifies the implementation of pause and rewind video controls
as they can be implemented in the client without any server inter-
vention. Activating these commands will indeed improve the
performance of the system as they will increase the length of time
the client will remain connected and able to forward data. Once
the client has forwarded the entire contents of the video to the
next client, it would then remain available to act as a seed and
help the server handle fast forward requests.

4. PERFORMANCE EVALUATION
To evaluate the performance of our protocol we wrote a simple
simulation program assuming that request arrivals for a particular
video were distributed according to a Poisson law. Our program
was written in C and simulated requests for a single two-hour
video. Simulation durations were selected in a way that guaran-
teed that each run simulated a minimum of 10,000 hours of
simulated time and a minimum of 100,000 request arrivals.

Since no data are shared among customers watching different
videos, the total bandwidth of a server distributing several videos
would always equal the sum of the bandwidths it dedicates to
each video.

We considered four possible values for the video acceleration
factor f, namely 1.01, 1.02, 1.05 and 1.10. We measured the
average server bandwidth at request arrival rates varying between
one and one thousand requests per hour. We did not consider
higher arrival rates as they seemed unrealistic.

Our results are summarized in Figures 5 and 6. Request arrival
rates are expressed in arrivals per hour and all bandwidths are
expressed in multiples of the video consumption rate.
As we can see, accelerated chaining performs much better than
the cooperative protocol at all medium to high request arrival
rates. This is to say that even a small forwarding acceleration
factor will eliminate most of the server workload at high arrival
rates while an acceleration factor of at least 1.10 is required to
have a significant impact on the server workload at low to
medium arrival rates, that is, at less than ten requests per hour.

0

0.2

0.4

0.6

0.8

1

1.2

1 10 100 1000

Requests/hour

Se
rv

er
 b

an
dw

id
th

 (c
ha

nn
el

s)

Cooperative protocol

1% acceleration

2% acceleration

5% acceleration

10% acceleration

Figure 5. Server bandwidth requirements of the accelerated

chaining protocol for selected values of the acceleration
factor.

0

1

2

3

4

5

6

7

8

1 10 100 1000
Requests/hour

Se
rv

er
 b

an
dw

id
th

 (c
ha

nn
el

s)

Chaining with a 6 minute buffer
Cooperative protocol
Chaining with a 30 minute buffer
2% acceleration
10% acceleration

Figure 6. Server bandwidth requirements of the three

protocols.

These savings are significant because the server will still have to
manage client arrivals and departures and this workload will
increase linearly with the request arrival rate. As the server
becomes busier with such administrative aspects of its workload,
reducing its video distribution burden become more critical.

5. HANDLING SMALL DEVICES
Not all small portable devices are able or willing to keep in their
buffers more than a few minutes of video, say β minutes. As it
was the case with the standard chaining protocol, this limitation
forces the server to initiate a transmission of the full video each
time that two successive requests are separated by more than β
minutes. We should thus expect to see a significant increase of
the server workload at low arrival rates and no impact whatsoever
at high arrival rates.
Figure 7 displays the average server bandwidth at various arrival
rates and various buffer sizes. We assumed the same two-hour
 video duration as we did before and selected a video acceleration
factor of 1.05. As we expected, client buffer size limitations do
not impact the server’s workload at high request arrival rates and
have only a limited impact at medium arrival rates. The situation
is quite different at low arrival rates because clients that can only
store β minutes of video cannot effectively participate in the video

537

0

1

2

3

4

5

6

7

8

1 10 100 1000

Requests/hour

Se
rv

er
 b

an
dw

id
th

 (c
ha

nn
el

s) Six-minute buffer

Fifteen-minute buffer

Thirty-minute buffer

Two-hour buffer

Figure 7. Server bandwidth requirements of the accelerated
chaining protocol when clients cannot store entire videos in

their buffers.

distribution process when too many consecutive requests are sepa-
rated by more than β minutes. As a result, clients with the
smallest buffers will make the highest demands on the server’s
workload at low arrival rates. Conversely, clients that can store at
least 30 minutes of video, that is, 25 percent of the video duration
have a much more moderate impact. We can thus safely conclude
that we could easily integrate clients with these buffer sizes in the
chaining process.
This is not to say that the integration process would be fully
transparent. For one, we would lose the ability to implement
pause and rewind controls at the client level. While these two
commands had previously a beneficial impact on the server's
workload, they will now require contingent streams coming
directly from the server and break the current chain of requests.
A more difficult issue is raised by the uploading bandwidth limi-
tations of small devices. Any self-sustaining P2P system requires
that the aggregate forwarding bandwidth of all its peers remains
equal to their aggregate receiving bandwidth. This will be diffi-
cult to achieve without drastically reducing the video transmission
quality or assuming the presence of a large number of selfless
peers acting as seeds.

6. CONCLUSIONS
We have presented an accelerated chaining protocol for video-on-
demand applications that makes the modest assumptions that all
clients can
1. Store in their buffer the entire contents of the video they are

playing; and
2. Forward to their successor in the chain video data at a rate

slightly higher than the video consumption rate, say, one to
five percent faster.

At the same time, our protocol does not require clients to keep
forwarding video data once they have finished playing the video
and handles premature disconnections.
Our simulations indicate that increasing the client video forward-
ing rate by 5 percent virtually eliminates the server workload for a
two-hour video whenever the request arrival rate exceeds 30
requests per hour.

More work is still needed to define the best implementation of the
fast forward control and specify an incentive mechanism that
motivates clients to forward video data at the appropriate rate
[10].

REFERENCES
[1] Ammar, M. Why Johnny can’t multicast: lessons about

the evolution of the Internet. Keynote Address, In
Proceedings of the 13th International Workshop on
Network and Operating Systems Support for Digital Audio
and Video (NOSDAV 2003), Monterey, CA, p. 1, June
2003.

[2] Annapureddy, S., S, Guha, C. Gkantsidis, D.
Gunawardena, and P. Rodriguez. Exploring VoD in P2P
swarming systems. In Proceedings of the 26th IEEE
International Conference on Computer Communications
(INFOCOM 2007), Anchorage, AK, pp. 2571–2575, May
2007.

[3] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A.
Rowstron and A. Singh, SplitStream: high-bandwidth
multicast in cooperative environments. In Proceedings of
the 19th ACM Symposium on Operating Systems Principles
(SOSP 2003), New York, NY, pp. 298–313, Oct. 2003.

[4] S. W. Carter. and D. D. E. Long. Improving video-on-
demand server efficiency through stream tapping. In
Proceedings of the 5th International Conference on
Computer Communications and Networks (ICCCN '97),
Las Vegas, NV, pp. 200–207, Sep. 1997.

[5] Cohen, B. Incentives Build Robustness in Bit Torrent. In
Proceedings of the Workshop on Economics of Peer-to-
Peer Systems, Berkeley, CA, 2003.

[6] Dan, A., P. Shahabuddin, D. Sitaram and D. Towsley.
Channel allocation under batching and VCR control in
video-on-demand systems. Journal of Parallel and
Distributed Computing, 30(2):168–179, Nov. 1994.

[7] Kirk, P. Gnutella—A protocol for a revolution.
http://rfc-gnutella.sourceforge.net/

[8] Lin, F. C. Zheng, X. Wang, X. Xue. ACVoD: A peer-to-
peer based video-on-demand scheme in broadband
residential access networks, International Journal of Ad
Hoc and Ubiquitous Computing, 2(4)4, 2007

[9] Liu, Y., Y. Guo and C. Liang. A survey on peer-to-peer
video streaming systems. Peer-to-Peer Networking and
Applications, 1(1):18–28, Mar. 2008.

[10] Mol, J .J. D., J. A. Pouwelse, M. Meulpolder, D. H .J.
Epema, and H. J. Sips. Give-to-get: An algorithm for P2P
video-on-demand. In Proceedings of the 13th Annual
Multimedia Computing and Networking Conference
(MMCN 2008), San Jose, CA, Jan. 2008.

[11] Pâris, J.-F. A cooperative distribution protocol for video-
on-demand. In Proceedings of the 6th Mexican
International Conference on Computer Science, Puebla,
Mexico, pp. 240–246., Sep. 2005.

[12] Shah, P. and J.-F. Pâris. Peer-to-peer multimedia
streaming using BitTorrent, In Proceedings of the 26th

538

International Performance of Computers and
Communication Conference (IPCCC 2005), New Orleans,
LA, pp 340–347, Apr. 2007.

[13] Sheu, S., K. A. Hua, and W. Tavanapong. Chaining: a
generalized batching technique for video-on-demand
systems. In Proceedings of the IEEE International
Conference on Multimedia Computing and Systems
(ICMS '97), pp. 110–117, June 1997.

[14] Su, T.-C., S.-Y. Huang, C.-L. Chan and J.-S. Wang.
Optimal chaining and implementation for large scale
multimedia streaming, In Proceedings of the 2002 IEEE
International Conference on Multimedia and Expo (ICME
2002), Lausanne, Switzerland, Vol.1, pp. 385–388, Aug.
2002.

[15] Su, T.-C., S.-Y. Huang, C.-L. Chan and J.-S. Wang.
Optimal chaining scheme for video-on-demand
applications on collaborative networks. IEEE Trans. on
Multimedia, Vol. 7, No 5, pp. 972–980, Oct. 2005.

[16] Viswanathan, S. and T. Imielinski. Metropolitan area
video-on-demand service using pyramid broadcasting.
Multimedia Systems, 4(4):197–208, Aug. 1996.

[17] Zhang, X., J. Liu, B. Li, and T.-S. P. Yum,
CoolStreaming/DONet: A data-driven overlay network for
peer-to-peer live media streaming. In Proceedings of
the24th IEEE International Conference on Computer
Communications (INFOCOM '05), Vol. 3, pp. 2102–2111,
March 2005.

539

	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Table of Contents

