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ABSTRACT 
We present a more efficient chaining protocol for video-on-
demand applications.  Chaining protocols require each client to 
forward the video data it receives to the next client watching the 
same video.  Unlike all extant chaining protocols, our protocol 
requires these clients to forward these data at a rate slightly higher 
than the video consumption rate.  Our simulations indicate that 
increasing the client video forwarding rate by 5 percent is suffi-
cient to virtually eliminate the server workload for a two-hour 
video when request arrival rates remain above 30 requests per 
hour  

Categories and Subject Descriptors 
H.5.1 [Information Systems] INFORMATION INTERFACES 
AND PRESENTATION — Multimedia Information Systems. 

General Terms 
Algorithms, Performance, Design. 

Keywords 
P2P, Streaming, Video-on-demand. 

1. INTRODUCTION 
One of the major impediments to the wider development of video-
on-demand (VOD) services is their high bandwidth requirements.  
Assuming that the videos are in MPEG-2 format, each user 
request will require the delivery of around six megabits of data 
per second.  Hence a video server allocating a separate stream of 
data to each request would need an aggregate bandwidth of six 
gigabits per second to accommodate one thousand concurrent 
clients.  
This situation has led to numerous proposals aimed at reducing 
the bandwidth requirements of VOD services.  These proposals 
can be broadly classified into two groups.  Proposals in the first 
group assume that servers can multicast data to several clients at 

the same time.  For instance, batching [6] delays requests for a 
popular video in order to form batches of requests that can be 
serviced with a single video stream.  Pyramid broadcasting [16] 
and stream tapping [4] are more sophisticated examples of the 
same approach.  While these schemes can provide very impres-
sive bandwidth savings, they only apply to networks supporting 
multicast, which is not the case for the vast majority of systems 
on the Internet [1]. 
Proposals in the second group require clients to participate in the 
video distribution process [3, 17].  In essence, their approach is 
the same as that of peer-to-peer (P2P) file sharing systems such as 
Gnutella [7] or BitTorrent [5].  By letting clients serve each other, 
P2P solutions overcome many limitations of traditional client-
server architectures. They can handle flash crowds (that is, very 
large and sudden surges of demand) as well as overcome the 
bandwidth limitations of the server.  In addition, P2P solutions do 
not require any special support from the network, be it IP multi-
cast or any specific content distribution infrastructure.  At the 
same time, they present some important differences from P2P file 
sharing systems [2, 12]. 
First, existing file sharing systems do not account for the real-time 
needs of streaming applications.  As they do not download video 
data in sequence, these data remain unusable until the download is 
complete.   
Second, these real-time needs require unidirectional data transfers 
among clients in addition to data exchanges between pairs of 
clients: the clients that are already watching the video will 
forward their video data to more recently arrived clients without 
receiving any video data from them.  As a result, tit-for-tat 
policies clearly do not apply. 
Chaining [13] is the oldest P2P protocol for VOD.  It organizes 
all clients watching a video into chains where each client 
forwards the video data it receives to the next client in the chain.  
Since the original protocol assumed that clients did not have 
enough buffer space to store an entire video, it did not perform as 
well at low request arrival rates as at higher rates.  While this 
limitation has been addressed in two more recent protocols [8, 
11], the actual performance of all chaining protocols is still 
affected by client departures.  Experience has shown that most 
clients will disconnect and stop forwarding data once they have 
finished playing the video. As a result, the next client will have to 
receive the missing data from the server.  Accelerated chaining 
addresses these concerns by requiring clients to forward their 
video data at a rate slightly higher than their video consumption 
rate.  As we will see, even very small increases of this forwarding  
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Figure 1.  How chaining works. 

rate have a dramatic impact on the server workload.  To give an 
example, increasing the peer forwarding rate by as little as 5 
percent will virtually eliminate the server workload for a two-hour 
video whenever the request arrival rate exceeds 30 requests per 
hour. 
The remainder of the paper is organized as follows. Section 2 
reviews previous work on chaining protocols.  Section 3 
introduces our protocol, Section 4 discusses its performance and 
Section 5 investigates an alternative implementation for small 
portable devices.  Finally, Section 6 offers our conclusions. 

2. PREVIOUS WORK 
For brevity’s sake, we will focus our discussion on the distri-
bution protocols that are directly relevant to our work, and refer 
the reader to the work of Liu et al. [9] for a more general survey. 
Standard chaining [13] constructs chains of clients such that (a) 
the first client in the chain receives its data from the server and (b) 
subsequent clients in the chain receive their data from their 
immediate predecessor.  As a result, video data are in some way 
“pipelined” through the clients belonging to the same chain.  
Since standard chaining only requires clients to have very small 
data buffers, a new chain has to be restarted every time the time 
interval between two successive clients exceeds the capacity β of 
the buffer of the first client.  Figure 1 shows three sample 
customer requests.  Since customer A is the first customer, it will 
get all its data from the server. As customer B arrives less than β 
minutes after customer A, it can receive all its data from customer 
A.  Finally customer C arrives more than β minutes after customer 
B and must be serviced directly by the server. 
The main weakness of standard chaining is its poor performance 
at low arrival rates, that is, whenever the mean time between 
consecutive requests exceeds β minutes.  Extended chaining [13] 
takes into account the maximum time clients are willing to wait 
and delays some requests in order to produce chains of requests 
where consecutive requests are separated by less than β minutes.  
Advanced chaining [8] proposes to bridge the gap between 
requests separated by more than β minutes by inserting idle peers 
that will relay the data.  Optimal chaining [14, 15] addresses the 
same issue by managing all client buffers as a single shared 
resource.  As a result, clients can “borrow” the buffers of other 
clients in order to bridge gaps between incoming requests.  The 
protocol can also integrate streaming proxies in order to increase 
chain responsiveness and resiliency.   
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Figure 2.  How the cooperative protocol works. 
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Figure 3.  Comparing the required server bandwidths of the 
cooperative protocol with that of chaining at various buffer 

sizes. 

The cooperative video distribution protocol, also known as 
expanded chaining [11] extends the chaining protocol by taking 
advantage of the larger buffer sizes of modern clients and requires 
them to keep in their buffers the previously watched portion of the 
video.  At the same time, it assumes that clients will disconnect 
and stop forwarding data once they have finished playing the 
video.  In the cooperative protocol, each client forwards to its 
immediate successor video data starting with the beginning of the 
video at the same rate it consumes them.  When a client has 
finished playing a video, it will disconnect itself and will stop 
forwarding video data to its successor in the chain, thus forcing 
the server to transmit the missing part of the video. 
Consider for instance how the protocol would handle the three 
requests displayed in Figure 2 for a video of duration D.  The first 
request to the video will be entirely serviced by the server.  Since 
client B’s request arrives while the first request is still being 
serviced, the server will thus instruct client A to forward the first 
D – Δt minutes of the video to the client B and schedule a trans-
mission of the last Δt minutes of the video to the same client at a 
later time.  When client C's request arrives, the server will simi-
larly order client B to forward the first D – Δt' minutes of the 
video to the client C and schedule a transmission of the last Δt' 
minutes of the video to the same client. 

535



From serverClient A

From client AClient B

From client BClient C

To client A To CSERVER

From server

Δt

Δt’

 
Figure 4.  How accelerated chaining works. 

More generally, the amount of time spent by the server to service 
a request will always be given by min(D, Δt), where D is the 
duration of the video and Δt is the time interval between the 
request being serviced and its immediate predecessor.  Since the 
service times of these requests will never overlap, the server 
instantaneous bandwidth will never exceed the video consumption 
rate. 

3. ACCELERATED CHAINING 
Figure 3 compares the server bandwidth requirements of the 
cooperative protocol with that of the chaining protocol for various 
buffer sizes. The x-axis indicates the request arrival rates in 
requests per hour on a logarithmic scale while the y-axis expresses 
the server bandwidths in multiples of the video consumption rate. 
The video duration was assumed to be two hours, which is not far 
from the average duration of a full-length movie. 
As we can see, the cooperative protocol performs much better 
than chaining at low-to-medium request arrival rates.  This should 
be expected because the chaining protocol must restart a new 
chain every time two consecutive requests are separated by more 
than β minutes. 
Conversely, chaining performs better than the cooperative proto-
col at high arrival rates.  In fact, the server workload is 
completely eliminated whenever the time interval between two 
consecutive requests remains below β minutes.  We must however 
observe that this excellent performance is based on the assump-
tion that clients will always keep forwarding data to their 
successor in the chain after they have finished playing the video.  
We do not believe that clients will do so and assume instead that 
most clients will disconnect once they have played the video.  In 
addition, a significant number of clients will disconnect without 
having played the full video. 
Our accelerated chaining protocol overcomes this limitation by 
requiring clients to forward video data to their successor in the 
chain at a slightly higher rate than the video consumption rate, 
say, between one and ten percent faster. 
Let b denote the video consumption rate and ba > b the acceler-
ated video forwarding rate.  We define the forwarding 
acceleration factor f  of the video as 

bbf a= . 

Forwarding a video of duration D at the accelerated video 
forwarding rate ba will then take D /f time units. 

Consider now a pair of consecutive clients that are separated by a 
time interval Δt.  The second client will be able to get the entire 
video from the first client as long as 

tDfD Δ−≤ , 

that is, as long as 

 
f

fDt 1−
≤Δ , (1) 

or 

 
tD

Df
Δ−

≥ , (2)  

Consider for instance how the protocol would handle the three 
requests displayed in Figure 3 for a video of duration D.  The first 
request to the video will be entirely serviced by the server.  
Assuming that the time interval Δt between the first and the 
second request satisfies Equation (1), client B will receive all its 
video data from client A.  Assuming that the time interval Δt' 
between the second and the third request does not satisfy 
Equation (1), the server will instruct client B to forward the first f 

(D – Δt’) minutes of the video to client C and schedule a transmis-
sion of the last D –  f (D – Δt') minutes of the video to the same 
client. 
More formally, let us consider a video of duration D and a request 
for that video from a customer C arriving at the server at time t.  
Let Δt denote the time interval between that request and the last 
request for the same video and let B designate the customer who 
issued that last request.  Define 

f
fDt 1* −

=Δ , 

where f is the video acceleration factor. 
Accelerated chaining will operate in the following fashion: 

1. If Δt ≥ D, there is no overlap between the two requests; the 
server will then initiate a transmission of the full video, 
starting at time t and ending at time t + D. 

2. If Δt ≤ Δt*, there is a sufficient overlap between the current 
request and the previous request to allow client C to get all 
its video data from client B. 

3. If Δt* < Δt < D, client C will receive the first 
f (D – Δt) minutes of that video from client B and the last 
D –  f (D – Δt) minutes of the video directly from the server.  
This transmission will start at time t + f (D – Δt) and end at 
time t + D. 

3.1 Implementation Issues 
While accelerated chaining greatly reduces the server workload at 
high arrival rates, is does not eliminate it.  The server will mostly 
act as a dispatcher instructing clients when and where to forward 
video data and at which rate. 
Another important server task will be handling client disconnec-
tion.  To operate correctly, our protocol requires all clients in a 
chain to forward the video data they have received to the next 
customer in the chain.  As a result, any client disconnection will 
deprive all subsequent clients from their video data.  This is 
clearly not an acceptable state of affairs. 
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There is a simple solution to the problem.  Consider for instance 
the scenario of Figure 4 where client C receives most of its video 
data from client B, which receives all its video data from 
customer A.  Should client B stops forwarding data to client C, 
client C will immediately notify the server. In such a situation, 
one of the following two cases would apply: 
1. If the disconnection happens while client A is still playing 

the video, the server will order client A to stop forwarding 
data to client B and forward them instead to client C. As a 
result, client C will get the first f (D – (Δt + Δt')) minutes of 
the video from clients A and B.  In addition, the server will 
cancel its scheduled transmission to client B and replace it by 
a transmission of the last D – f (D – (Δt + Δt')) minutes of the 
video to client C. 

2. If the disconnection happens after client A has finished 
playing the video, the server will cease transmitting any data 
to client B and start transmitting the missing video data to 
client C.  

3.2 Implementing interactive controls 
Requiring client buffers to be able to store an entire video greatly 
simplifies the implementation of pause and rewind video controls 
as they can be implemented in the client without any server inter-
vention. Activating these commands will indeed improve the 
performance of the system as they will increase the length of time 
the client will remain connected and able to forward data.  Once 
the client has forwarded the entire contents of the video to the 
next client, it would then remain available to act as a seed and 
help the server handle fast forward requests. 

4. PERFORMANCE EVALUATION 
To evaluate the performance of our protocol we wrote a simple 
simulation program assuming that request arrivals for a particular 
video were distributed according to a Poisson law.  Our program 
was written in C and simulated requests for a single two-hour 
video.  Simulation durations were selected in a way that guaran-
teed that each run simulated a minimum of 10,000 hours of 
simulated time and a minimum of 100,000 request arrivals. 

Since no data are shared among customers watching different 
videos, the total bandwidth of a server distributing several videos 
would always equal the sum of the bandwidths it dedicates to 
each video. 

We considered four possible values for the video acceleration 
factor f, namely 1.01, 1.02, 1.05 and 1.10.  We measured the 
average server bandwidth at request arrival rates varying between 
one and one thousand requests per hour.  We did not consider 
higher arrival rates as they seemed unrealistic.   

Our results are summarized in Figures 5 and 6.  Request arrival 
rates are expressed in arrivals per hour and all bandwidths are 
expressed in multiples of the video consumption rate. 
As we can see, accelerated chaining performs much better than 
the cooperative protocol at all medium to high request arrival 
rates.  This is to say that even a small forwarding acceleration 
factor will eliminate most of the server workload at high arrival 
rates while an acceleration factor of at least 1.10 is required to 
have a significant impact on the server workload at low to 
medium arrival rates, that is, at less than ten requests per hour. 
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Figure 5.  Server bandwidth requirements of the accelerated 

chaining protocol for selected values of the acceleration 
factor. 
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Figure 6.  Server bandwidth requirements of the three 

protocols. 

These savings are significant because the server will still have to 
manage client arrivals and departures and this workload will 
increase linearly with the request arrival rate.  As the server 
becomes busier with such administrative aspects of its workload, 
reducing its video distribution burden become more critical.   

5. HANDLING SMALL DEVICES 
Not all small portable devices are able or willing to keep in their 
buffers more than a few minutes of video, say β minutes.  As it 
was the case with the standard chaining protocol, this limitation 
forces the server to initiate a transmission of the full video each 
time that two successive requests are separated by more than β 
minutes.  We should thus expect to see a significant increase of 
the server workload at low arrival rates and no impact whatsoever 
at high arrival rates. 
Figure 7 displays the average server bandwidth at various arrival 
rates and various buffer sizes.  We assumed the same two-hour
 video duration as we did before and selected a video acceleration 
factor of 1.05.  As we expected, client buffer size limitations do 
not impact the server’s workload at high request arrival rates and  
have only a limited impact at medium arrival rates.  The situation 
is quite different at low arrival rates because clients that can only 
store β minutes of video cannot effectively participate in the video  
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Figure 7.  Server bandwidth requirements of the accelerated 
chaining protocol when clients cannot store entire videos in 

their buffers. 

distribution process when too many consecutive requests are sepa-
rated by more than β minutes.  As a result, clients with the 
smallest buffers will make the highest demands on the server’s 
workload at low arrival rates.  Conversely, clients that can store at 
least 30 minutes of video, that is, 25 percent of the video duration 
have a much more moderate impact.  We can thus safely conclude 
that we could easily integrate clients with these buffer sizes in the 
chaining process. 
This is not to say that the integration process would be fully 
transparent.  For one, we would lose the ability to implement 
pause and rewind controls at the client level.  While these two 
commands had previously a beneficial impact on the server's 
workload, they will now require contingent streams coming 
directly from the server and break the current chain of requests.   
A more difficult issue is raised by the uploading bandwidth limi-
tations of small devices.  Any self-sustaining P2P system requires 
that the aggregate forwarding bandwidth of all its peers remains 
equal to their aggregate receiving bandwidth.  This will be diffi-
cult to achieve without drastically reducing the video transmission 
quality or assuming the presence of a large number of selfless 
peers acting as seeds. 

6. CONCLUSIONS 
We have presented an accelerated chaining protocol for video-on-
demand applications that makes the modest assumptions that all 
clients can 
1. Store in their buffer the entire contents of the video they are 

playing; and 
2. Forward to their successor in the chain video data at a rate 

slightly higher than the video consumption rate, say, one to 
five percent faster. 

At the same time, our protocol does not require clients to keep 
forwarding video data once they have finished playing the video 
and handles premature disconnections. 
Our simulations indicate that increasing the client video forward-
ing rate by 5 percent virtually eliminates the server workload for a 
two-hour video whenever the request arrival rate exceeds 30 
requests per hour. 

More work is still needed to define the best implementation of the 
fast forward control and specify an incentive mechanism that 
motivates clients to forward video data at the appropriate rate 
[10]. 
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