

MAILLE AUTHENTICATION
A Novel Protocol for Distributed Authentication

Andrew Fritz and Jehan-François Pâris1
University of Houston, Department of Computer Science, Houston, Texas 77204-3010

Abstract: We present a decentralized solution to the distributed authentication problem.
Unlike current schemes, Maille does not rely on a set of dedicated servers.
Each participating node has a set of trusted peers that act as replicated
repositories for its public key. Whenever a node A wants to contact another
node B, it sends messages to its peers, which forward them to their peers, and
so on until they reach B's peers. These peers then reply with B's public key and
return them back through the paths the requests originally took. To guarantee
the independence of replies, each node along each path forwards one reply
only. Because of this, each Byzantine failure can introduce at most one false
response. If the same key value is asserted by a qualified quorum of replies, A
accepts it as the true key of B. Otherwise authentication fails.

Keywords: authentication, distributed security, peer-to-peer, Byzantine failure, denial of
service, certificate authority

1 Supported in part by the National Science Foundation under grant CCR-9988390

2 Andrew Fritz and Jehan-François Pâris

1. INTRODUCTION

Maille: ... mesh, network, a coat of mail, ... A flexible fabric made of
metal rings interlinked. It was used especially for defensive armor.
 -Webster's 1913 Dictionary

In distributed environments, centralized services can become bottlenecks,
and are often targets for attack, both electronic and political. As a result, any
service that resides at some small fixed number of locations has the potential
to limit the ultimate performance, availability and security of the system in
question. Any critical portion of the distributed system controlled by one
organization can effectively give control of the entire system to that
organization.

Existing authentication systems require centralized management by a
single organization or well-defined collaboration among organizations. This
leads to a weakness. The Verisign problem—where Verisign changed the
way many root DNS servers worked without the permission of the standards
organizations or community—is a real-world example. Placing control of a
central service required by many organizations into the hands of a single
organization places the controlling organization in a monopoly position
where they can use their management right to control the larger group. For
political reasons, this type of structure may not be acceptable in many
collaborations. In addition, it is inherently weak against legal and political
attack. No known centralized authentication system can prevent this
problem.

To handle normal failures, such as network outages, most systems
replication authentication credential to a small fixed set of authentication
authorities, or accept the limited scalability and uptime of a central
authentication service. If all authentication server replicas happen to be on
the same link, or even segment of the larger network, then a single failure
may take them completely offline.

Furthermore, centralized authentication services provide a clear target for
denial of service (DOS) attacks. By preventing authentication, an attacker
can take an otherwise robust distributed system offline. If no one can be
authenticated because all or most of the authentication authorities are
unavailable, then the entire system is effectively taken offline.

Several researchers (e.g. Reiter and Stubblebine, 1997; Kahn, 1998) have
noted that independent corroboration of credential is an effective way to
remove this single point of failure. To our knowledge, no existing
authentication system actually makes use of multiple independent sources of
key information beyond a set of defined authentication servers. This paper
presents the Maille authentication protocol, a new authentication protocol
that eliminates authentication as a single point of failure. All nodes
participate as equals to provide multiple verifiably independent sources of
public keys. Each node has established trust relationships with some peers.
Any node in the network may use its trusted peer relationships to obtain the

MAILLE AUTHENTICATION 3

public key of any other node in the network. When one node in the network
wishes to authenticate another node, it attempts to acquire that nodes public
key using its peer relationships. The protocol is structured so the requester
can verify the independence of the sources of keys. It then uses a
conventional nonce challenge against the node to establish one-way trust. If
mutual trust is required, each node uses the protocol to establish the identity
of the other, and a direct secure session can be established.

As a result, the Maille protocol provides a means to acquire the public
key of an entity in a trusted manner without a trusted central authority. Since
all nodes equally share authentication functions, there are no favored targets
of attack in a Maille network. Maille acts as a completely distributed
certificate authority.

The remainder of this paper is laid out as follows. Section 2 covers
previous work. Section 3 defines the Maille-authentication protocol. Section
4 provides an analysis of Maille’s vulnerability to attacks. Section 5 presents
future work. Finally, section 6 has our conclusions.

2. PREVIOUS WORK

Kerberos (Steiner et al., 1988) is a centralized authentication system,
designed to allow single-sign-on from trusted workstations. Kerberos based
systems rely on a single or a small set of authentication servers. The
Kerberos system uses a ticket scheme, which allows clients to authenticate
against the Kerberos servers only once. Thereafter, for the lifetime of the
ticket, no further authentication is required and services and other
individuals can trust the ticket holder without having to know their key.

Kerberos does have several weaknesses. First, it is highly centralized,
requiring one master server where all updates occur. Replication of the
security information to other server will offload all authentication work, but
cannot reduce the total amount of work the master server must do to update
security information and to broadcast changes. Further, because Kerberos
relies on a single master server for all changes, that server becomes a single
point of failure from a hardware, software, security and political standpoint.

The KryptoKnight family of protocols (Bird et al., 1995) is designed for
embedded devices and is optimized for speed and efficiency. It relies on a
single, possibly replicated, authority to provide trusted keys and act as an
intermediary during authentication for all clients. The main focus is on
providing several protocols that allow the exchange of keys, challenges and
responses to flow as efficiently as possible by allowing the use of
information each of the parties may already have. The KryptoKnight
protocol family does not address issues of scalability or how credentials are
revoked. A Byzantine failure in an authority is catastrophic for all parties
using that authority.

Public key infrastructure (PKI) (Adams and Lloyd, 1997) has become
very popular for Internet commerce. It is also widely used in grid computing

4 Andrew Fritz and Jehan-François Pâris

as the basis for the Globus Security Infrastructure (GSI) (Foster et al. 1998).
PKI relies on a hierarchy of certificate authorities (CA) for scalability. At the
top is the root CA, which signs certificates for servers in the second level
and so on, until the lowest-level CAs are used to establish the identity of
outside entities such as web servers. Revocations are handled through
certificate expiration dates and revocation lists.

Replication of CA ensures that most authentications will not be affected
by a single failure. However, the higher up the hierarchy an authentication is
required to go, the more likely a single failure is to prevent successful
authentication. Caching prevents most interactions from requiring the root
CA and other high level CA servers. Nevertheless, a Byzantine failure at the
root level will lead to a complete loss of security. Failures at lower levels
will result in security breach for only part of the system. Politically, the root
CA is a single point of failure.

PGP (Zimmermann, 1995) is a system designed to let many individuals
authenticate each other without a central authority. It provides a method of
creating and distributing keys among small clique of users and for deciding
to trust a key acquired from a third party. How much trust can be placed in a
public key is directly related to how many intermediaries it went through. A
single failure in any intermediary can result in an incorrect key being used.
Because of its decentralized nature, there is no global single point of failure
since unless key repositories are used. PGP does not provide any way for
two unrelated parties to authenticate each other than through trusted key
repositories, which will then be single points of failure.

PathServer (Capkun et al., 2002) is an extension to PGP that fills the role
of the trusted key repository suggested by the PGP users guide. The server
models the network topology and tries to find mutually independent sources
for the key, ensuring that agreement can be reach about their validity. In this
way the normal PGP authentication system is strengthened against single
failures in key sources and keys can be used that otherwise would not be
acceptable.

However, PathServer itself represents a single point failure, as the
requesting user still must trust a single entity for the key, namely the
PathServer. The user is free to verify the key, but this results in the user's
computer functioning as a PathServer. Further, the method used for finding
independent keys is graph analysis. This technique requires much global
knowledge and an approximation to escape the NP-HARD nature of the
problem. PathServer does not assure that keys are actually independent, just
likely to be that way.

Coca (Zhou et al., 2002) is a distributed certificate authority that makes
use of threshold public key cryptography. Available servers transmit their
portion of the certified key to a delegated server selected by the client. If the
delegated server can collect enough parts, a complete key can be assembled.
Coca is specifically designed to prevent DOS attacks. Further, if t is the
minimum number of components required to assemble a public key and n
the total number of servers, t+1 Byzantine failures must occur before the

MAILLE AUTHENTICATION 5

public key of a service is compromised and (n–t)+1 failures must occur to
deny authentication.

Coca relies on a fixed set of cooperating servers that all have the public
keys of all other servers. As the number of replicated servers increases to
meet demand, the risk of at least one server being compromised increases. If
the threshold used in the threshold cryptography is not increased to match
the server pool size, then it become easier to compromise the keys Coca
holds. Increasing the threshold for cryptography increases network and
processor overhead as more servers and messages are required to collect
enough key parts to perform authentication.

3. THE MAILLE PROTOCOL

We want to design a protocol that allows participating nodes to
authenticate each other securely without any centralized point of failure,
including management. Individual nodes must not need global knowledge of
the network. The system should not be dramatically affected by multiple
Byzantine failures and should experience graceful degradation when faced
with DOS attacks or the loss of many participating nodes.

Maille has no centralized point of failure because it is a decentralized key
distribution system made up of individual, equal and autonomous nodes.
Each node in the network has a set of peer nodes. Each node's peers are
explicitly trusted. Like in any large distributed authentication system, this
trust is transitive. Each node trusts its peers, and all trust in other nodes is
derived from this basic trust. A Maille node uses its trusted peer
relationships to find a set of independent sources for key information. If
enough completely independent sources agree on the key, then the acquired
key can be used to challenge the other party to prove its identity via a nonce
challenge.

Maille ensures that individual responses are independent by tracking the
path (called a response chain) by which each response reached the requester.
A response chain includes all nodes that relayed the message from the node
holding a copy of the requested public key back to the requester. The
protocol guarantees that non-independence chains will always be detected.

Maille also guarantees that each properly functioning node filters
duplicates and extra responses. Thus, if n independent chains are found, the
requester can be sure that n nodes independently returned chains with the
same key. A single Byzantine failure can never introduce more than one
false chain and one false key. In addition Maille requires a qualified quorum
of independent agreeing chains. Hence many such failures in separate, but
very specific parts of the network must occur to provide a false key.

6 Andrew Fritz and Jehan-François Pâris

3.1 Assumptions

1. Network transport is not secure unless Maille uses a secure channel it
creates using keys it trusts.

2. Attackers know the network structure and can attack any machine in the
network with equal effort.

3. Attackers know the protocol and can use that knowledge to find the most
critical node(s) to any transaction.

4. Any node may fail or be compromised.
5. No single source of information can ever be trusted.
6. The underlying cryptography functions are strong. They cannot be

broken easily without some other failure that provides clues.

3.2 Notations

In the following discussion, the notations listed below are used.
• A, B, C represent specific nodes in the network.
• X and Y represent any arbitrary node in the network.
• f (...) is a message, containing, amongst other, the parameters specified

between the parentheses.
• A (in italics) represent the public key of node A.
• Ø is the special null key. It is treated exactly as any other key except

where noted.
For example, A may send to B the message kr(A,C) to request the public

key C for node C.

3.3 Node Structures

Each node in the network maintains the following:
• kr_cache: a cache of recent key requests storing the requester and a

return seen flag (initially false).
• trust_list: a list containing the public keys of the peers of the node.
• black_list: a list of nodes that are blacklisted.

Note that trust_list and black_list must mutually disjoint.

3.4 Messages

• kr(A,C) denotes a key request that contains the ultimate source (A), the
target (C). Other parameters include the remaining hop count and the
immediate source (the peer that forwarded the message to the node).

• trust(kr(A,C),C) denotes a statement of trust by the sender to the receiver
that C is the key requested by kr(A,C).

• rkr(...) denotes a return key request for the public key of C in the form:
trust(kr(A,C),C) | rkr(B,rkr(...)) | rkr(B,trust(kr(A,C),C)), where B is the
peer who sent the rkr(...).

MAILLE AUTHENTICATION 7

3.5 Peer Relationships

Within the peer-to-peer network, each node has a set of trusted peers.
Peer relationships are established offline from the point of view of the Maille
protocol. However, there are several required features of peer relationships
that the rest of the system relies on.

If two nodes A and B are peer nodes, then A has a trusted public key of
B, and vice versa. These keys are only used to establish a bidirectional
secure channel between A and B. For added security, each node has one key
per peer so that the public key A uses to establish a secure channel with peer
B is different than the public key A would use to establish a secure channel
with peer C. The secure channel from A to B is called secure channel A-B.

How A and B exchange public keys initially (i.e. become peers), or how
A and B chose each other as peers isn't the focus of this paper.

Upon startup, peers A and B mutually authenticate each other using the
appropriate key pair and establish a secure channel for use later. This secure
two-way channel is used to pass all messages from A to B and from B to A
for the duration of the protocol. Thus, A can trust that any message arriving
via the secure B-A channel came unaltered from B and only B and vice
versa.

Each node A also maintains a key pair for third party authentications.
The public key A is passed to the peers along with a version number. When a
key request message arrives at a peer of A, it returns that key A to the node
that requested it. An optional parameter l specifies the lifetime of the third
party key pair. If additional protection against a combination of Byzantine
failures and clear text cryptographic attacks is required, we may choose to
require A to change its key pair from time to time.

3.6 Obtaining Keys

The Maille protocol is made up of three individual protocols, each
executed in response to particular types of messages. The key request
initiator protocol is used by nodes to find keys. The key request forwarding
protocol controls the propagation of kr(…) messages in Maille and the return
key request protocol governs the propagation of rkr(…) messages.

3.6.1 Key Request Initiator Protocol

When node A, which is part of the network, wishes to obtain a trusted
public key for node C, which is also part of the network, it does the
following:
1. Node A initiates a key search by sending to its peers kr(A,C).
2. It waits for rkr(...) responses from them.

8 Andrew Fritz and Jehan-François Pâris

3. When a response arrives, node A checks that the sending peer has not

already returned a response. If it has, it drops this response and return to
step 2.

4. Node A creates a new rkr(…): rkr(Z, rkr(…)) where Z is the peer that
returned the original rkr(…).

5. Node A adds the new rkr(...) to the set of chains received and returns to
step 2.

3.6.2 Key Request Forwarding Protocol

Any node X receiving a key request kr(A,C) from some peer node Y
carries out the following procedure:
1. Node X verifies that the key request kr(A,C) is not in its kr_cache. If it is,

it drops this instance of kr(A,C) and stops.
2. Node X checks whether it has in its trust_list a trusted public key C of

node C in trust_list whose lease has not expired. If it has such key, it
returns an rkr(C) to node Y in the form trust(kr(A,C),C) and stops.

3. Node X checks if there is an entry in black_list for C. If there is, it returns
rkr(

�
) to Y in the form trust(kr(A,C),

�
)) and stops.

4. Node X subtracts one from the remaining hop count of kr(A,C). If the
hop count is now 0, it drops kr(A,C) and stops.

5. Node X adds kr(A,C) to the node’s kr_cache.
6. Node X sends kr(A,C) to all node’s peers, except node Y.

3.6.3 Return Key Request Forwarding Protocol

Any node X receiving an rkr(...) message from a node Z does the
following:
1. Node X checks whether kr_cache contain an entry that matches kr(A,C)

of this rkr(...) message. If it does not, node X drops this rkr(…) message
and stops.

2. If the kr_cache entry has the seen flag set, node X drops this rkr(…)
message and stops. This ensures that node X will only return only one
rkr(…) per kr(…). Otherwise two dependent chains would be returned
from node X.

3. Node X marks the kr_cache entry for kr(A,C) of this rkr(...) message as
seen.

4. Node X returns a new rkr(…) message to the immediate source of the
kr(…) in kr_cache, node Y, in the form rkr(Z,rkr(...)) to verify that it
received an rkr(…) message from Z over the secure Z-X channel.

3.6.4 Protocol Outcome

Carrying out this protocol will result in A receiving a set of rkr(…)
messages (called chains).The kr(A,C) might cause A to receive a chain like:

MAILLE AUTHENTICATION 9

rkr(A,rkr(B,rkr(X,trust(kr(A,C),C))))
which is more easily under stood in the form A>B>X>Y with key C

This means that A received an rkr(…) from B, who received an rkr(…)
from X who received the key C from Y. Note that no node adds itself to the
chain. It is added instead by the node to which it returns the rkr(…).

3.7 Picking a Winning Key

Whenever distinct conflicting keys are returned, we must decide which
key to accept as the public key of C. This procedure is carried out even if
only one distinct key is received. The score it produces is required in later
steps.

Chains are separated into groups based on the public key they contain C1,
C2, and so forth. Each unique key will receive a score that is the total of all
the scores of all chains that contain that key. The score of each individual;
chain is computed by raising a link trust factor 0 < w ≤ 1 to the power of the
length of the chain |rkr(...)|:

w|rkr(…)|

The key with the highest total score is the only one considered.

3.8 Independence Analysis and Penalties

The wining key is not necessarily the correct key because rogue nodes
could have flooded their peers with the incorrect key. Therefore an
independence analysis is performed on all chains containing the
winning key. The analysis must determine the number of collisions that
occur. A collision is defined as the number of times any two chains contain
the same node, or 1 minus the number of times each distinct node appears in
any chain.

The number of collisions is used as a penalty. If all chains are
independent, then the number of collisions is 0. Otherwise, the number of
collisions is subtracted from the total score the key received in the previous
step.

3.9 Determining if the Winning Key Should be Trusted

If the adjusted score of the winning key surpasses some threshold of trust
t, that key is used. If that key is the null key (

�
) then C is added to the

black_list of node A and authentication fails. Otherwise the key request fails
and no authentication may occur. Node A may choose to retry the key
request with a longer hop count.

10 Andrew Fritz and Jehan-François Pâris

3.10 Using Keys

Once node A has obtained a key B for node B, it will use this key to
authenticate B by sending a one-way nonce challenge. If B wishes to
authenticate A as well, it will need to acquire A and extend the challenge to a
two-way challenge.

3.11 Tunable Parameters

Maille includes several tunable parameters. All the parameters of Maille
are related in intuitive ways to the level of security those using Maille want.

3.11.1 Chain Scoring

The link trust factor w determines how much trust is placed on each hop a
response takes. A value of w near 1 will result in longer chains being nearly
as trusted as shorter chains. A value of 1 will result in all chains being
trusted equally. A value below and near 1 is suggested.

The trust threshold t is used to determine if a key has amassed a qualified
quorum of support. The value of t will need to be less than the minimum
peer count m. If w is 1, that is, all chains are treated equally regardless of
length, then one key with all m peers supporting it will receive a score of m.
If t is above m the no key can satisfy the quorum.

Further, if t is too close to m, many keys may not be able to amass
enough support to be trusted. Higher values of t will make incorrect
authentication of rogue nodes less likely, but will also allow fewer rogue
nodes to launch a successful DOS attack.

One good compromise would be to set t relative to the actual peer count a
node has. It could be set to 2/3 of the total peer count, thus requiring 2/3 of
all peers to return chains that support one key for the key to be trusted.

3.11.2 Peer Relationships

The minimum peer count m determines how strong the system is in
general, assuming all nodes have not many more peers than m. If m is only 3
(and all nodes have exactly 3 peers), w is 1, and t is 2 then a minimum of
only 2 Byzantine failures is required to cause a false key to win the
competition. If m is raised to 30 and t to 20, 20 such failures are required for
the false key to win, and 11 are required to deny authentication that should
otherwise occur.

MAILLE AUTHENTICATION 11

4. ANALYSIS

The Maille authentication protocol removes the centralized authority that
normally acts to dispense trusted public keys. Maille’s design also changes
the system dynamics so that authentication experiences graceful failure, both
in terms of availability and security. As nodes fail, or are compromised, trust
is not completely lost. Because all nodes are operated separately by the
participating organizations and participate equally and there is no hierarchy
of nodes within the network and no single control point, no one organization
is placed in a monopoly position.

4.1 Byzantine Failures and Impersonation

Consider that a node A wishing to authenticate some other node claiming
to be C. To do this, it must acquire C’s public key C. Should a node D try to
impersonate C, it must either acquire C’s private key, which only C has, or
cause A to receive and trust its public key D instead of C. To prevent the
first problem, C must protect its private key. We consider only the second
case.

A
F

E

D

C

G

H

Figure 1. A is the requestor; C is the real target; D is the node that wishes to impersonate C;
E, F, G and H are A’s peers.

D may choose to operate alone or with others to provide incorrect keys. If
it operates alone, it must provide enough responses to A that favor D instead
of C. As in figure 1, the worst case occurs when D is peered with all of A’s
peers E, F, G and H. It could then fabricate an rkr(…) message that provided
D and quickly send it to E, F, G and H. Because the fake rkr(…)s from D
were received by A’s peers before all other replies, they will be the only
ones to reach A. If w is 1, D will receive a score of 4. However, during the
independence analysis, 3 collisions would be found because E, F, G and H
would all add D to the rkr(…) they forward. The key D will only receive a

12 Andrew Fritz and Jehan-François Pâris

score of 1. If the trust threshold t is set appropriately, this will not be enough
for A to trust D.

D may also choose to collaborate with other rogue nodes to trick A into
accepting D.

Looking back at figure 1, we see that A may trust the wrong key if
enough of its peers act as collaborating rogues. To trick A to accept the
wrong public key for C, the number of peers fa returning the same false key
must satisfy the inequality

fa ≥ t/w

If w is 1, at least t of A’s peers must be collaborating rogues for A to use
the wrong key. For a small value of m, as in the example above, only a small
number of rogues is required. The easiest counter measure is to select a
value of w<1, which will increase minimum number of rouges required to
fool A. Unfortunately, it will also reduce the likelihood a valid key will
achieve a qualified quorum. In larger networks with larger values of m, t can
be higher and many more collaborating rogues will be needed. If the rogues
are not directly peered with A, more collaborating rogues may be required to
fool A.

4.2 DOS Attacks

Rogue nodes may wish to exploit the Maille protocol to deny successful
authentication. System without established peer relationships (i.e. computers
that are not part of a Maille network) have no chance to exploit the protocol
since all messages within the protocol flow over secure channels between
peers. Outside nodes cannot insert messages.

Rogue nodes can produce messages that try to exploit flaws in the
protocol. Consideration should be given to various possibilities. To prevent
A from obtaining a trusted public key for C, enough messages must be
suppressed to prevent C from scoring higher than t. This would require a
partial partitioning of the network such that there were less than t
independent paths from A to C (assuming w = 1). However, as the number of
paths decreases towards t it will become less likely due to the random
routing used in Maille that A will receive enough independent replies to trust
any key.

Rogue nodes could also exploit the independence analysis by providing a
correct key with a fabricated chain. The artificial chain could be created to
contain many of the nodes that might take part in the real chains. This would
artificially penalize otherwise valid responses.

MAILLE AUTHENTICATION 13

5. FUTURE WORK

We plan to extend the Maille protocol in several fashions. First, we plan
to investigate techniques to automatically detect and blacklist rogue nodes.
Second we want to develop protocols for adding and readmitting nodes to
the network. Third we are designing an authorization protocol to work along
side the Maille authentication protocol.

We are also currently building a simulation model that will allow us to
explore the scalability of the system, routing, failure detection, network
structure and restructuring.

6. CONCLUSIONS

The Maille authentication system is a completely distributed
authentication system based on established asymmetric cryptography and
nonce challenges. In some respects, it is similar to the certificate authorities
of PKI because it acts as certificate authority to facilitate authentication.
However, Maille authentication is designed to work in an environment
where the assumptions made by most systems are unacceptable for political
or security reasons. Maille is hardened against denial of service attacks, a
reality of modern Internet computing. Because of its totally decentralized
nature, Maille resists Byzantine failures, natural failures and organizational
subversion. Its performance and security degrades gracefully in the face of
failures or compromises instead of experiencing total collapse in the face of
a small number of failures.

A Maille network is a peer-to-peer network where all nodes participate
equally. Any node may use its peer relationships to acquire the trusted key of
another node in the network. To do so, the Maille protocol is designed to
find independent sources for the key of the target, and to maintain
traceability of all who took part in finding the key. This combination allows
the requesting node to know with a high degree of certainty that the key is
authentic and for the target. Because the task of providing keys is not trusted
to any one entity or small group of entities, one organization cannot use
control of authentication to subvert the larger system.

REFERENCES

Adams, C., and Lloyd, S., 1997, Profiles and Protocols for the Internet public-key
infrastructure, Proc. 6th IEEE Workshop on Future Trends of Distributed Computing
Systems, pp. 220–224.

Bird, R., Gopan, I., Herzberg, A., Janson, Ph., Kutten, S., Molva, R., and Yung, M., 1995,
The KryptoKnight family of light-weight protocols for authentication and key distribution,
ACM/IEEE Transactions on Networking, 3(1):31–41.

14 Andrew Fritz and Jehan-François Pâris

Capkun, S., Buttyan, L., and Hubaux, J.-P., 2003, Small worlds in security systems: an

analysis of the PGP certificate graph, Proc. 2003 ACM Workshop on New Security
Paradigms, pp. 28–35.

Foster, I., Kesselman, C., Tsudik, G., and Tuecke, S., 1998, A security architecture for
computation grids, Proc. 5th ACM Conference on Computer and Communication Security,
pp. 83–92.

Kahn, C., 1998, Tolerating penetrations and insider attacks by requiring independent
corroboration, Proc. 1998 ACM Workshop on New Security Paradigms, pp. 122–133.

Reiter, M. K., and Stubblebine, S. G., 1997, Path independence for authentication in large-
scale systems, Proc. 4thACM Conference on Computer and Communications Security, pp.
57–66.

Steiner, J, G., Neuman, C., and Schiller, J. I., 1988, Kerberos: an authentication service for
open network systems, Proc. 1988 Winter Usenix Conference, pp. 191–201.

Zhou, L., Schneider, F. B., Van Renesse, R., 2002, COCA: A secure distributed online
certification authority, ACM Transactions on Computer Systems, 20(4):329-368.

Zimmermann, P., 1995, The Official PGP User's Guide. MIT Press, Cambridge, MA.

