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ABSTRACT

Today and tomorrow’s computing clusters are likely to have one hard drive at
every node.  Hence large clusters need to be protected against disk failures.
Extant solutions either require more than one drive per node or destroy the natural
locality of disk accesses resulting from the decomposition of the problem space.
We have presented a method avoiding these two pitfalls and showed how it can be
tuned to provide either inexpensive reads or inexpensive writes.

A series of discrete event simulations has shown that the reliability of very large
clusters managed by our method is quite satisfactory and better indeed than that of
reliable arrays of distributed disks.
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1.  Introduction
One of the best ways to alleviate the I/O bottleneck in computing clusters is to allocate to each

computing node sufficient disk resources to let it perform locally most of its disk accesses. This

solution is particularly attractive because it takes advantage of the natural locality of disk accesses

resulting from the decomposition of the physical problem space among the nodes.  It presents nev-

ertheless the drawback of making the whole cluster much more susceptible to disk failures.

Due to their mechanical nature, disk drives are one of the least reliable components of a computer

system with mean time to fail varying between 8,000 and 800,000 hours [3, 4]. Hence, unless some

redundancy is introduced, attaching one disk drive to each computing node of a large cluster will

considerably lower the overall reliability of the system.  One possible solution is to attach a Reli-

able Array of Independent Disks (RAID)[1, 7] on each computing node.  This would unfortunately

require having at least two, three or four disks per computing node.  Another solution would be to

organize the cluster nodes themselves into one of more disk striping units implementing the same
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architecture as a RAID but without a shared controller [2, 5].  The two major advantages of the

solution are its low space overhead and its very good reliability.  Organizing the cluster nodes

into striping units would however destroy the locality of disk accesses and consequently increase

the network traffic among the nodes.
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Figure 1: A computing node exporting copies of its critical data to its four neighbors

We propose a method for increasing the reliability of large clusters of workstations that preserves

the locality of disk accesses.  In its simplest form, it requires more disk space than RAID-like

organizations.  We present however two possible methods to eliminate this problem, one providing

fast reads and the other fast writes.

2.  Our Solution

The solution we propose is based on the observation that some of the data stored on disk are not

critical to the pursuit of the computation because they could be easily reconstituted.  Hence they do

not need to be backed up. We will replicate only the data that are critical to the computation.  We

also recognize that each computing node within a cluster has one or more neighboring nodes.

These neighboring nodes can sometimes be defined by the topology of the network; one could then

call them physical neighbors.  More generally they can be defined by the decomposition of the

problem space among the computing nodes; we will call these neighboring nodes logical neigh-

bors.  What characterizes both physical and logical neighbors is the fact that the nodes are much

more likely to exchange data with their neighbors than with the other nodes within the cluster.  We

propose to use these neighbors to store redundant copies of the critical data stored by each node.
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For instance, a computing node with four neighbors such as the node on Figure 1 would export

copies of 25 percent of its critical data to each of its neighbors.
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Figure 2: The same node receiving copies of the critical data of its four neighbors

Our solution will introduce two types of overheads.  First each computing node will have to proc-

ess the backup data blocks of all its neighbors.  Second it will have to allocate disk space for them.

We do not believe that the processing overhead is a major problem because the likelihood of find-

ing spare processor cycles is bound to increase thanks to the ever increasing speeds of processors.

This observation was recently confirmed by Kotz and Cai [5]. The space overhead issue could be

more critical but there are at least two potential approaches to reduce it.

Consider the case of a computing node of figure 2, which has four neighbors, respectively named

N, E, S and W.  Let us assume for the sake of simplicity that its backup areas for the four neigh-

bors are all equal in size. Instead of keeping these four areas separate, the node could:

(a) combine all four areas into a single area A where the exclusive or (XOR) of the contents of all

four areas would be stored; hence we have A = N ⊕ E ⊕ S ⊕ W, or

(b) maintain one area A' with the XOR of the backup blocks of N and S and another area A" with

the XOR of the backup blocks of E and W; thus we have A' = N ⊕ S  and A" = E ⊕ W.

As a result,  the storage overhead can be reduced to 25 percent of the backed up data blocks when

we store the XOR of the four backup areas or  to 50 percent when an XOR of N and S and an

XOR of E and W are maintained.
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After a drive failure, each neighbor of the node must first reconstruct its share of the backup data.

Then each neighbor must find backup nodes for (a) the fraction of its own data their were backed

up by disk that failed, and (b) its share of the data that were on the disk that failed.  Once recovery

is completed, the processor with the failed disk can use its neighbors as file servers and all data on

disk have again back ups.

One major disadvantage of the approach is that writes have now become more expensive.  In order

to compute the new value of the backup area after a data block d has been modified, we need both

the old value of the data block dold and the old value of the corresponding block of the backup area

pold  as pnew is given by:

pnew = pold ⊕ dold ⊕ dnew.

Hence one write would require two reads to obtain the current values of dold and pold in addition to

the two writes necessary to store dnew and pnew.

In many applications the critical data that need to be saved essentially consist of snapshots that

record the state of the computation at a given time and can be used to restart the computation after

a malfunction.  This is to say that each snapshot is written once but is very unlikely to be read

before being overwritten by another snapshot.  An alternative approach is then possible.  It requires

each node to distribute the copies of its critical data among its neighbors in a circular fashion so

that if a node has m neighbors numbered from 0 to m-1, the backup copy of block dk will always be

stored on the neighbor number k mod m.  As a result any set of m consecutive data blocks will have

their backup copies dispersed among all the m neighboring node.  If we are willing to accept tem-

porarily inconsistencies of the checkpoint data, while the checkpoint is constructed, we can:

(a) delay the writes until a full set of data blocks numbered from k.m to km+m-1 for some

positive integer k are ready to written,

(b) distribute the backup copies of these m blocks among the m neighboring nodes, and

(c) store on the node itself the XOR of the blocks.



5

S

Figure 3: Nodes involved in the recovery of a disk drive that was backed up using partial XORs

With this method, the total cost of a write is one message sent to a neighbor and 1+1/m disk

accesses. Read operations have in turn become more expensive because they now require the

exchange of two messages (a request and a reply) with a neighbor.

3.  Reliability Analysis

In addition to making writes more costly, our first approach also presents a potential reliability risk

because recovering the data lost due to a drive failure will now require the cooperation of some or

all of the neighbors of the nodes holding the back-up data.  Consider for instance, the case of a

cluster where each node has four neighbors and the back-up data were compressed using partial

XORing.  As figure 3 shows, the failure of the disk drive of any given node would require each of

the four neighbors to cooperate with four of their own neighbors to reconstruct the lost data.  If any

of the eight disk drives corresponding to these eight nodes failed before this task is completed, some

data would be permanently lost and the whole cluster would fail.  We will refer to this type of

global failures as protocol failures.  The situation is even worse when the back-up data rare com-

pressed using full XORing.  As figure 4 indicates, a total of twelve nodes need now to cooperate to

reconstruct the missing data.  Moreover, the four nodes on the two diagonals are becoming

bottlenecks since they need to send their data blocks to two of the neighbors of the site.
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 Figure 4: Nodes involved in the recovery of a disk drive that was backed up using full XORs

To evaluate the importance of these protocol failures, we conducted a study of the level of reliabil-

ity afforded by our first approach and compared it with that achieved by organizing the cluster into

a set of  redundant arrays of distributed disks (RADD) [8].

Definition.  The reliability R(t) of a system is the probability that it will operate correctly over

[0, t ) given that it was operating correctly at t = 0.

Reliabilities can be predicted either through Markov or through discrete event simulation.  We

selected the latter method because we wanted to evaluate the reliability of very large clusters of

workstations and the systems of differential linear equations we would have had to solve would

have been untractable.

We assumed that disk failures would be independent events exponentially distributed with a mean

time to fail (MTTF) of 800,000 hours.  We also assumed that the time to recover from a disk fail-

ure would be essentially equal to the time required to read and transfer the information necessary to

reconstruct the lost data. For RADD architectures, we assumed this time to be equal to one hour.

Since reliabilities are difficult to evaluate through discrete event simulation, we measured instead

the MTTFs.  For each run, we observed 10,000 independent  failures and used them to compute 95
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percent confidence intervals of the MTTF.  In many systems with spares, the MTTF is linked with

the reliability by the approximate relation R t
t

MTTF
( ) exp( )≅ −  [9].

RADD Organization

We assumed in our simulation that the cluster would be subdivided into independent groups of n

workstations that would each implement a RAID-like architecture.  In addition to the MTTFs, we

also measured the percentage of failures that would correspond to protocol failures, that is the per-

centage of failures occurring while the RADD was recovering from a previous failure and had not

yet reconstructed all the lost data.

Table 1: MTTFs for RADDs assuming we need 80 percent of the disk drives

RADD Size Mean Time To Fail Protocol Failures

5 362,055 h ± 5,103 0%

10 267,190 h ± 3,063 0.01%

Table 1 displays the MTTFs and the percentage of protocol failures for RADDs of either five of

ten nodes assuming that a RADD would fail as soon as more than 20 percent of the drives fail.

Being quite intrigued by the very low percentage of protocol failures, we repeated the simulations

assuming this time that a RADD would continue to remain operational as long as one of its drives

was operational.  While being totally unrealistic, this hypothesis was presenting an interesting limit

case for the percentage of protocol failures.

Table 2: MTTFs for RADDs assuming we need only one disk drive

RADD Size Mean Time To Fail Protocol Failures

5 1,824,482 h  ± 19,168 0%

10 2,350,115 h  ± 19,670 0.02%

As table 2 shows, these percentages remain extremely low despite the fact we are in presence of a

limit case.  The very high MTTFs were included as a curiosity but are not meaningful.

It should be pointed out that these values only apply to the individual RADDs into which the clus-

ter was subdivided.  Since a failure of any of these clusters would result in a failure of the whole
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cluster, the MTTF of the cluster can be obtained by dividing the MTTF of a RADD by the number

n of RADDs in the cluster.

XORed backups:

We focused our simulation study on very large clusters using fully XORed because these configu-

rations were the most susceptible to protocol failures.  We assumed that all nodes would have four

neighbors and that the busiest nodes would have to read and forward 50 percent of the data.  Hence

the total recovery time is only divided by two.

To further assess the impact of the recovery time on the MTTF of the cluster, we ran all our simu-

lations for read times equal to zero hour, one hour and one day.  While the first and the last of

these three values are totally unrealistic, they respectively provide good upper and lower bounds

for the true read times.

Table 3: MTTFs for a cluster of 512 nodes assuming we need 80 percent of the disk drives

Time to Read Data Mean Time To Fail Protocol Failures

0 h 181,506 h  ± 350 0%

1 h 181,383 h  ± 353 0.11%

1 day 179,883 h  ± 448 1.72%

Table 3: MTTFs for a cluster of 1024 nodes assuming we need 80 percent of the disk drives

Time to Read Data Mean Time To Fail Protocol Failures

0 h 179,628 h  ± 248 0%

1 h 179,417 h  ± 267 0.19%

1 day 176, 465 h  ± 459 3.32%

Table 3 and 4 contain the MTTFs and the percentage of protocol failures for clusters with respec-

tively 512 and 1,024 nodes.  As one can see, the percentage of protocol failures increases with the

duration of the recovery period while the MTTF does not seem to be very significantly affected by

either the number of nodes in the cluster or the duration of the recovery period.  As for the case of

RADDs, we wanted to know how the percentage of protocol failures would evolve if the cluster

could remain operational with less that 80 percent of its drives operational.  We repeated thus the
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simulations assuming that the cluster would continue to remain operational as long as one of its

drives was operational.

Table5: MTTFs for a cluster of 512 nodes assuming we need one disk drive

Time to Read Data Mean Time To Fail Protocol Failures

0 h 5,462,641 h  ± 20,255 0%

1 h 5,438,248 h  ± 21,353 0.55%

1 day 5,024,328 h  ± 32,640 8.97%

Table 6: MTTFs for a cluster of1,024 nodes assuming we need one disk drive

Time to Read Data Mean Time To Fail Protocol Failures

0 h 6,002,005 h  ± 20,013 0%

1 h 5,960.546 h  ± 22,017 0.82%

1 day 5,121,407 h  ± 42,750 16.65%

These results are summarized in tables 5 and 6.  It should first be noted that the MTTFs are

unrealistically high and can only be compared against themselves.  We observe however that the

percentage of protocol failures remain very low for all reasonable values of the time needed to

reconstruct the data lost due to a site failure.

We can definitively conclude from these simulation that the number of nodes involved in the

reconstruction of the lost data has very little impact on the MTTF of the system for all reasonable

values of the reconstruction time.  We need however to handle more cautiously these MTTFs.  It is

clear that the main factor affecting the MTTF of a cluster of workstation is the percentage of drive

failures it can tolerate.  We can therefore suggest that it will always be a good idea to equip the

workstations with large disk drives having a sufficient number of free disk space to allow for the

fast reconstruction of the critical data lost due to a drive failures.  We have however several rea-

sons to remain skeptical about our estimates of the MTTFs themselves.  First, we have not taken

into account the fact that drive failures are not independent events because the environmental fac-

tors that have caused one disk failure (power spike, vibrations and so forth) are likely to affect the

reliabilities of the other drives in the cluster.  Second, we assumed that nothing could hamper the

progress of the reconstruction process but the failure of one of the involved drives.
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4.  Conclusion

Today and tomorrow’s computing clusters are likely to have one hard drive at every node.  Hence

large clusters need to be protected against disk failures.  Extant solutions either require more than

one drive per node or destroy the natural locality of disk accesses resulting from the decomposition

of the problem space. We have presented a method avoiding these two pitfalls and showed how it

can be tuned to provide either inexpensive reads or inexpensive writes.

A series of discrete event simulations has shown that the reliability of very large clusters managed

by our method is quite satisfactory and better indeed than that of reliable arrays of distributed

disks.  More work is still needed to obtain more realistic estimates of the mean time to fail of the

clusters.
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