1997 Cluster Computing Conference, GA, March 9-11, 1997.

A Disk Architecture for Large Clusters of Workstations
Jehan-Francois Paris

Department of Computer Science
University of Houston
Houston, TX 77204-3475
paris@cs.uh.edu

ABSTRACT

Today and tomorrow’s computing clusteaee likely to have onehard drive at
every node. Hencéarge clustersneed to beprotected against disk failures.
Extant solution®ither require moréhanone drivepernode ordestroy thenatural
locality of disk accesses resulting from the decomposition of the praipece.
We have presented a method avoiding these iifadlp andshowed how itan be
tuned to provide either inexpensive reads or inexpensive writes.

A series of discrete event simulatidmssshownthatthe reliability of very large
clusters managed by our method is quite satisfactory and ineitedthan that of
reliable arrays of distributed disks.

Keywords: computer clusters, file systems, fault-tolerant systems, RAID systems

1. Introduction

One of thebest ways to alleviate tHéO bottleneck in computing clusters is to allocatesézh
computing nodesufficient disk resources to let it perform locally mositsfdisk accesses. This
solution is particularly attractive because it takes advantaiipe oaturallocality of disk accesses
resulting from the decomposition of the physical probépaceamong the nodes. It presents/-

ertheless the drawback of making the whole cluster much more susceptible to disk failures.

Due to their mechanicaature,disk drivesareone of thdeast reliablecomponents of a computer
system with mean time to fail varying between 8,000 and 800,000 hours [3, 4]. Hencesamkess
redundancy is introduced, attachioige disk drive teeach computingiode of alarge clustemill
considerably lower the overall reliability of the system. One possible solutioraitath aReli-
able Array ofindependenbDisks (RAID)[1, 7] on each computingpde. This would unfortunately
require having at least two, threefour disks percomputing node. Another solution would be to

organize the clustarodes themselves into one of mdisk stripingunitsimplementing the same

architecture as a RAID buwtithout a shared controllg2, 5]. The two major advantages of the
solutionare itslow spaceoverhead andts very good reliability. Organizing the clustenodes
into striping unitswould however destroy the locality of diskcesses and consequently increase

the network traffic among the nodes.

N

25%

25%
25%

25%

b

&

Figure 1: A computing node exporting copies of its critical data to its four neighbors

We propose anethodfor increasinghe reliability of large clusters of workstatiotigat preserves
the locality of disk accesses. s simplest form, it requiremore diskspace tharRAID-like
organizations. We presembwever two possible methods to eliminéiis problemone providing

fast reads and the other fast writes.

2. Our Solution

The solution we propose is based on the observtmrsome of thedatastored on dislare not
critical to the pursuit of the computation because they could be easily reconstitetezk they do
not need to bdackedup. Wewill replicate only thedata that are critical tthe computation. We
also recognizethat each computinghode within acluster hasone or moreneighboring nodes
These neighboring nodeansometimes be defined by the topology of the network; one toeid
call them physical neighbors More generally thegan bedefined by the decomposition of the
problem spacamong the computing nodes; we vallll these neighboringodeslogical neigh-
bors. What characterizes both physical dadical neighbors is théact thatthe nodesare much
more likely to exchangdatawith their neighbors than with the othewsdes within theluster. We

propose to use these neighbors to store redundant copies of the dailiicstbred by eacinode.

For instance, a computingode withfour neighbors such as thede onFigure 1 would export

copies of 25 percent of its critical data to each of its neighbors.

()

25%

L
i : 25%
25%
i

25%

&

Figure 2: The same node receiving copies of the critical data of its four neighbors

Our solution will introduce two types of overheads. First each computing node will have to proc-
ess the backup data blocks of all its neighbors. Second it will have to allocate disk space for them.
We do not believe that the processing overhead is a major problem because the likelihood of find-
ing spare processor cycles is bound to increase thanks to the ever increasing speeds of processors.
This observation was recently confirmed by Kotz and Cai [5]. The space overhead issue could be

more critical but there are at least two potential approaches to reduce it.

Consider the case of a computing node of figure 2, which has four neighbors, respectively named
N, E, SandW. Let us assume for the sake of simplicity that its backup areas for the four neigh-

bors are all equal in size. Instead of keeping these four areas separate, the node could:

(&) combine all four areas into a single akeshere theexclusive oi(XOR) of the contents of all

four areas would be stored; hence we haweN O E O SO W, or

(b) maintain one are&’ with the XOR of the backup blocks NfandSand another are@”" with
the XOR of the backup blocks BfandW, thus we havé&'=N [S andA" =E [W.

As aresult, the storage overhead can be reduced to 25 percent of the backed up data blocks when
we store the XOR of the four backup areas or to 50 percent when an XO&hdE and an
XOR of E andW are maintained.

After a drive failure, eacheighbor of the nodmust first reconstruct its share tbk backup data.
Then each neighbor must fitrdckupnodesfor (a) the fraction ofits own datatheir were backed
up by disk that failed, and (b) its shardlof data thaivere on the diskhatfailed. Once recovery
is completed, the processor with the failed diak use itsieighbors as file servers aatl data on

disk have again back ups.

One major disadvantage of tapproach is that writdsave now become more expensive. In order
to compute th@ewvalue of thebackup area after a datbock d hasbeen modified, we nedabth
the old value of thelatablock d,,4and the old value of the corresponding block oftthekup area

Pold @SPrnew S given by:

Prew = Pold O doig O dhew

Hence onevrite would require twageads to obtain the current valuesdgi andpo In addition to

the two writes necessary to stokg, andpnew

In many applications theritical data thaneed to besaved essentially consist of snapshbts

record thestate ofthe computation at given timeand can be used testartthe computatiomafter

a malfunction. This is tgay thateach snapshot is writtesncebut is very unlikely to be read

before being overwritten by another snapshot. An alternative approach is then possible. It requires
eachnode todistribute the copies aofs critical dataamongits neighbors in aircular fashion so

that if a node has neighbors numbered from Oite1, the backup copy of bloak will always be

stored on the neighbor numbemodm. As a result any set af consecutive data blocks wiibve

their backup copies dispersathongall the m neighboring node. If warewilling to accepttem-

porarily inconsistencies of the checkpoint data, while the checkpoint is constructed, we can:

(@) delay the writes until a full set afatablocks numbered frork.m to kmtm-1 for some

positive integek are ready to written,
(b) distribute the backup copies of thesblocks among then neighboring nodes, and

(c) store on the node itself the XOR of the blocks.

Figure 3: Nodes involved in the recovery of a disk drive that was backed up using partial XORs

With this method, thetotal cost of a write ione messageent to a neighbor anth1/m disk
accesses. Read operations havéumm become more expensiiecause theyow require the

exchange of two messages (a request and a reply) with a neighbor.

3. Reliability Analysis

In addition to making writes more costly, our first approach also presents a potential reliability risk
because recovering tidata lostdue to a drive failuravill now require the cooperation sbme or

all of the neighbors of theodes holding théack-up data.Consider for instancehe case of a
clusterwhere eacmodehas fourneighbors and the back-ulatawere compressed usirpartial
XORing. As figure 3 shows, the failure of the disk drive of given node wouldequire each of

the four neighbors to cooperate with four of their own neighbors to reconstruct the lost data. If any
of the eight disk drives corresponding to these eight nodes failed before this task is completed, some
datawould be permanently lost and tiadnole clusterwould fail. We will refer to this type of

global failures agrotocol failures The situation igvenworsewhen theback-up data rareom-
pressed using full XORing. As figure 4 indicates, a tot&vefve nodes need now tmoperate to
reconstruct the missindata. Moreover, thefour nodes on the two diagonatse becoming

bottlenecks since they need to send their data blocks to two of the neighbors of the site.

@HQiQi?HQ

O~ —0O
O

Figure 4: Nodes involved in the recovery of a disk drive that was backed up using full XORs

To evaluate the importance of these protdailires, weconducted a study of thevel of reliabil-
ity afforded by our first approach and compared it it achieved by organizing tlwusterinto
a set of redundant arrays of distributed disks (RADD) [8].

Definition. The reliability R(t) of a system is the probability that it will operate correctly over

[0, t) given that it was operating correctly at t = 0.

Reliabilities can be predicted either through Markov or through disereget simulation. We
selected théatter methodbecause we wanted to evaluate the reliability of very large clusters of
workstations and the systems of differential linear equations we would have had twcale

have been untractable.

We assumethatdisk failureswould be independent events exponentiaibtributed with amean
time tofail (MTTF) of 800,000 hours. Walso assumethatthe time to recover from a disk fail-
ure would be essentially equal to the time required to read and transfer the information necessary to

reconstruct the lost data. For RADD architectures, we assumed this time to be equal to one hour.

Since reliabilitiesare difficult to evaluate through discrete event simulation, we measured instead

the MTTFs. For each run, we observed 10,000 independent failures ardemsed compute 95

percent confidencmtervals of theMTTF. Inmany systems witeparesthe MTTF is linked with

the reliability by the approximate relatid®(t) Dexp(—;) [9].

MTTF
RADD Organization
We assumed in owsimulationthatthe clustemwould be subdivided into independerbups ofn
workstations thatvould each implement a RAID-likarchitecture. In addition to tHdTTFs, we
also measured the percentage of failtineswould correspond to protoctdilures, that igshe per-
centage of failures occurringhile theRADD wasrecovering from a previous failure and had not

yet reconstructed all the lost data.

Table 1: MTTFs for RADDs assuming we need 80 percent of the disk drives

RADD Size Mean Time To Fail Protocol Failures
5 362,055 h + 5,103 0%
10 267,190 h + 3,063 0.01%

Table 1 displayshe MTTFs and the percentage of protocol failufes RADDs of either five of
ten nodes assumirthat a RADDwould fail as soon asnorethan 20 percent of the drives fail.
Being quite intrigued by the very low percentagemitocol failures, we repeated the simulations
assuming thisme that a RADDwould continue to remain operationallasg as one oits drives
was operational. While being totallyirealistic, this hypotheswaspresenting an interesting limit

case for the percentage of protocol failures.

Table 2: MTTFs for RADDs assuming we need only one disk drive

RADD Size Mean Time To Fail Protocol Failures
5 1,824,482 h + 19,168 0%
10 2,350,115 h + 19,670 0.02%

As table 2 shows, these percentages remdiemely low despite thiact we are irpresence of a

limit case. The very high MTTFs were included as a curiosity but are not meaningful.

It should be pointedut thatthese valuesnly apply to the individual RADDs intavhich the clus-

ter wassubdivided. Since a failure of any of these clusteyald result in a failure of thevhole

cluster, the MTTF of the cluster can be obtained by dividindth&F of aRADD by thenumber
n of RADDs in the cluster.

XORed backups:

We focusedur simulation study on very large clusters using fully XORed because dbefgu-
rationswere the most susceptible to protof@lures. We assumedtat allnodes would havéour
neighbors and that the busiest nodes would have to read and forward 50 perceadaf. tHence

the total recovery time is only divided by two.

To further assegbe impact of the recovetime on theMTTF of the cluster, we ran atlur simu-
lations for readimes equal to zerbour, one hour andoneday. While thefirst andthe last of
these three valuemre totally unrealisticthey respectively provide goatpper andower bounds

for the true read times.

Table 3: MTTFs for a cluster of 512 nodes assuming we need 80 percent of the disk drives

Time to Read Data Mean Time To Falil Protocol Failures

Oh 181,506 h + 350 0%
1lh 181,383 h + 353 0.11%
1 day 179,883 h + 448 1.72%

Table 3: MTTFs for a cluster of 1024 nodes assuming we need 80 percent of the disk drives

Time to Read Data Mean Time To Fail Protocol Failures

Oh 179,628 h + 248 0%
1h 179,417 h + 267 0.19%
1 day 176, 465 h + 459 3.32%

Table 3 and 4 contaithe MTTFs and the percentage of protocol failufes clusterswith respec-
tively 512and1,024nodes. As onean see, the percentage of protocol failures increases with the
duration of the recovery periathile theMTTF does noseem to be vergignificantly affected by
either the number of nodes in thlester or the duration of the recovery period. féwsthe case of
RADDs, wewanted to know how the percentagepobtocol failureswould evolve if thecluster

could remain operational with letisat 80percent of itdrives operational. We repeated thus the

simulations assuminthat the clusterwould continue to remain operational lagag as one of its

drives was operational.

Table5: MTTFs for a cluster of 512 nodes assuming we need one disk drive

Time to Read Data Mean Time To Fail Protocol Failures
Oh 5,462,641 h + 20,255 0%
1h 5,438,248 h + 21,353 0.55%
1 day 5,024,328 h + 32,640 8.97%

Table 6: MTTFs for a cluster 0f1,024 nodes assuming we need one disk drive

Time to Read Data Mean Time To Fail Protocol Failures
Oh 6,002,005 h + 20,013 0%
1h 5,960.546 h + 22,017 0.82%
1 day 5,121,407 h + 42,750 16.65%

These resultgre summarized in tables 5 and 6. It shoiildt be notedthat the MTTFs are
unrealistically highand canonly be comparedgainstthemselves. We observe howeteat the
percentage of protocol failures remain véow for all reasonable values ttie timeneeded to

reconstruct the data lost due to a site failure.

We candefinitively conclude from these simulatiadhat the number of nodes involved in the
reconstruction of the lostata hawery little impact on theMTTF of the systenfor all reasonable
values of the reconstruction time. \Weed however to handle marautiously thes®TTFs. Itis
clear thathe mainfactoraffecting theMTTF of acluster of workstation is the percentagelobe
failures it can tolerate. We can therefore sugtest it will always be a good idea to equip the
workstations with large disk drives having a sufficient number of free disk space tdalltve
fastreconstruction of the criticalata lostdue to a drivdailures. Wehave however several rea-
sons to remain skepticabout our estimates tfie MTTFs themselves.First, wehave not taken
into account théact thatdrive failuresarenot independent evenlb®cause the environmental fac-
tors thathave causedne diskfailure (power spike, vibrations and so for#rglikely to affect the
reliabilities of the other drives in the cluster. Second, we asstimédothing could hamper the

progress of the reconstruction process but the failure of one of the involved drives.

10

4. Conclusion

Today and tomorrow’s computing clustenelikely to have ondharddrive at every nodeHence
large clustersieed to berotected against disk failuregxtant solutionsither require more than
one drivepernode ordestroy thenaturallocality of disk accesses resulting from ttezomposition
of the problenspace. Weéhave presented a method avoiding these ftifallp andshowed how it

can be tuned to provide either inexpensive reads or inexpensive writes.

A series of discrete event simulatidmssshownthatthe reliability of very large clustersanaged
by our method is quitesatisfactory and bettendeedthan that ofreliable arrays ofdistributed
disks. More work is stilheeded tambtainmorerealistic estimates of thmean time tdail of the

clusters.

Acknowledgments

We wish to thantMr. Edward Robinson for his numeroesmmentsand suggestions. Thvgork
was supported irpart by the CENJU-3 Project at the University of Houston sponsored by
NECSYL.

References

[1] P. M. Chen, E. K. Lee, G. A. Gibson, R. Katzand D. A. Patterson, "RAIChigh-per-
formance, reliable secondary storageCM Computing Survey¥ol. 26. No. 2 (1994),
pp. 145-185.

[2] A. L. Drapeau, K. W. Shiriff, J. H. Hartman, E. L. Miller, S. Seshan, RKatz, K.
Lutz, D. A. Patterson, E. K.ee, P. M. Chen and G. A. Gibson, “RAID-II:hégh band-
width network file server,” Proc. 2F' Annual International Symposium on Computer
Architecture (1994), pp. 234-244.

[3] T. J. Glover and M. M. Young,Pocket PCRef(4th edition), Sequoia Publishing Inc.
(1994)

[4] IBM Corp., "MTBF-A measure ofOEM disk drive reliability,” WWW posting (URL
http://www.almaden.ibm.com/storage/oem/tech/mtbf.htm) (1995).

[5] D. Kotz and T.Cai, "Exploring the uses dfO nodesfor computation in a MIMDmul-
tiprocessor," Technical Report TR 95-253, Dartmouth College, 1995.

[6] D. D. E. Long, B. R. Montague and-F. Cabrera, “SWIFT/RAID: a digbuted raid
system,” Computer System¥ol. 7., No. 3 (1994), pp. 333-359.

11
[7] D. Patterson, G. Gibson and Ratz, "A Case forRedundant Arrays ofnexpensive
Disks," Proc. 1988 SIGMOD Conferencé1988), pp. 109-116

[8] M. Stonebraker and G. A. Schloss, “Distributed RAID-réw multiple copy algo-
rithm,"” Proc. 6" International Conference on Data Engineerii®90), pp. 91-95

[9] M. A. MGregor, ““Approximation formulas for reliabilityith repair,” IEEE Transac-
tions. on ReliabilityVol. R-12 (1963), pp. 64-92.

