
1

A JAVA TOOL FOR COLLABORATIVE EDITING OVER THE INTERNET

Rhonda Chambers
Dean Crockett
Greg Griffing

Jehan-François Pâris

Department of Computer Science
University of Houston

Houston, TX 77204-3475

ABSTRACT
We present a distributed Java application that allows

several people, possibly at different locations, to edit the same file at
the same time while exchanging comments on the changes they are
making to the file. While still being a prototype, our application pro-
vides a vivid demonstration of the benefits of collaborative editing.

1. INTRODUCTION
Computing networks have changed the way many of us work

because they allow us to access remote data all over the world and
provide a fast convenient way to communicate with people living and
working far away from us. It is not unusual today to find people
located in different states or different countries working together on
the same report. Whoever has been involved in such an endeavor has
noticed the lack of good software tools for collaborative editing. As a
result, too many co-authors settle for a routine where they take turns
editing their joint document while exchanging comments through
telephone or electronic mail. What is lost in the process is the
synergy occurring when the co-authors are in the same room, see the
same version of the document and edit it together.

A good tool for collaborative editing should allow this synergy to
occur. Hence it should allow several people, possibly at different
locations, to edit the same file concurrently and exchange comments
on the changes they are bringing to the file. To be truly effective, the
tool should also be easy to port to a new computing environment and
provide an easy to use graphical interface. Up to very recently, these
two last requirements were contradictory because applications with
graphical interfaces were much more machine dependent than their
text-based counterparts. (Even though X Windows has become the de
facto standard for UNIX platforms, they are not popular within the
personal computer community.) This situation has dramatically
changed with the recent introduction of the Java programming

language. Java was specifically designed to be portable over a wide
range of platforms and operating systems. It includes an extensive
library of methods that allow the rapid design of graphical user
interfaces.

There was another reason for selecting Java: the language con-
tains less widely known features for interprocess synchronization,
among which the first widely available implementation of the monitor
concept proposed by Brinch Hansen (1973) and Hoare (1974) more
than twenty years ago.

The remainder of our paper is organized as follows. Section 2
discusses some of the relevant features of the Java programming
language. Section 3 presents our user interface. Sections 4 and 5
respectively discuss the client and server parts of our applications.
Finally, Section 6 has our conclusions.

2. JAVA
As we expect most readers to be already familiar with the most

salient features of Java, we will only mention them here before dis-
cussing in more detail some of the interprocess synchronization
features of the language (Flannagan, 1996, Walnum, 1996). It
suffices thus to say that Java is an interpreted object-oriented
language designed to run on many different platforms and allowing
end-users to eliminate most, if not all, of the security risks they might
incur while running on their own machine Java applets downloaded
from the Internet.

Since the early days of operating systems development, systems
designers have found it difficult to synchronize concurrent accesses to
a shared resource, let it be a shared variable, a shared memory seg-
ment or a shared file. While many solutions to the problem have
been proposed, among which events, semaphores, conditional critical
regions path expressions and many other constructs (Silberschatz and
Gavin, 1994), the general consensus is that Brinch Hansen and
Hoare’s monitors provide the best solution to the problem.

2

Monitors control access to shared variables by requiring all
access to any shared variable to be performed through one of the pro-
cedures of the monitor attached to that particular instance of the
shared variable. Since these procedures can only be executed one at a
time, mutual exclusion is automatically achieved. Monitors also pro-
vide a wait primitive allowing one monitor procedure to wait until a
given condition is satisfied and a signal primitive allowing another
procedure to signal to the first procedure that the condition on which
it was waiting is now satisfied.

A major advantage of this approach is the fact that the processes
accessing the shared variable do not need to do anything special to
synchronize their access to the shared variable because everything has
been taken care of within the monitor procedures. Moreover, unsyn-
chronized accesses to a shared variable are guaranteed not to happen
under any circumstances.

Central to Java is the concept of class. Each Java class describes
a data object that is a set of methods that can be used to create new
instances of the data object and manipulate them. The Java
equivalent of a monitor is a Java class whose access methods have
been declared synchronized. The first thread invoking a
synchronized method on an instance of a data object will lock
that object. Any other thread invoking a synchronized method
on the same instance of the object will block until the lock is
removed. Java also provides wait() and notify() primitives but
without named conditions: whenever a synchronized access
method does a wait() , it cannot specify the condition it wants to
wait on. This would be a serious limitation if Java did not provide a
notifyAll() primitive waking up all waiting threads in a class
instance. The effect of a pair of wait(Condition_1) being
waken up by a notify(Condition_1) can thus be achieved by
replacing the notify(Condition_1) by a notifyAll() and
the. wait(Condition_1) by a:

 while(Boolean_Condition_1)wait()

where Boolean_Condition_1 is a Boolean expression that is
true if and only if the condition is satisfied. The notifyAll()
will wake up all waiting threads and the while() before the
wait() allows the waiting threads to decide themselves which one
should be allowed to continue while all others should return to their
waiting state.

3. THE USER INTERFACE
The user interface was designed with one major objective in

mind, namely the ease of use in editing and communicating with a
user’s collaborators. To this end, we broke its functionality into four
primary areas:
1) the user access module,
2) the non-editable text display module,
3) the text editing window module, and
4) the chat facility.

3.1 User Access
Even though this program is primarily a proof-of-concept appli-

cation, some sort of entry-point is still necessary. In a full-fledged

application of this type, a user would be expected to choose from
among several existing collaborative efforts, provide a password as
proof of eligibility to join the topic, be able to upload and download
files on which to work, and start new topics as necessary. For this
effort, however, all that was necessary was that a user provide a user
alias upon entry to the only topic available. The system takes that
user alias and associates it with a unique color (at the moment hard-
coded into the program instead of chosen by the user) and starts an
editing session for that user. When a new user joins a session, all
other users are notified and the new user’s alias appears in the user
alias display box in the color associated with that user’s activities.

3.2 The Text Display Window

The main feature of this application is the text display window.
The document upon which the users are collaborating is displayed in
a non-editable, scrollable window that takes up most of the display
area. All users see the same text, but have independent control over
which area of the text is displayed at any given time. Every user has
several options available to them regarding the text displayed in this
window. A user can mark, or highlight, a section of text, and that
text will change to match that user’s color on all users’ screens. In
this way users can indicate exactly which text they wish to point out
for discussion. In addition to marking a section of text in this
manner, the user can lock that block of text so the other users cannot
access it, and engage an editing window in which to make changes to
this text. When one user is editing a section of text, that text changes
to the color of the user doing the editing in all the users’ windows,
and also becomes bold so that all other users can tell the text is being
edited as opposed to merely being marked. When the user who is
editing the text indicates he is finished by pressing a “done” button,
the text that was highlighted on every users’ screen is replaced by the
new text in real-time so that all users can see any changes made as
soon as the work is done.

3.3 The Text Editing Window
The text editing window is an editable window that holds only

that text being edited, and is only displayed when a block of text is
actively being edited. When each editing session is done, the window
is hidden until it is needed again.

3.4 The Chat Facility
Since one of the primary purposes of this project was to create a real-
time document collaboration tool, some sort of communication facility
was required. We considered relying exclusively on Netscape’s
Internet Phone technology available for Netscape 3.0, but we decided
that this limited the audience for this application, so we built in a
standard chat facility with some additional functionality customized to
our application. The uniqueness of this chat function is that it is tied
into the color-coding of each user on the system, and displays all chat
messages from them in the appropriate color, as well as providing
their user alias. When a user wishes to send a chat message to the
other users, he enters the text in a chat entry field. When the enter
key is pressed, the text is sent to all the other users and appears in

3

Server

ServerSocket

Vector

Vulture

Socket

BlockedRangeUserAlias

TextFileClientPort

Thread

Connection

1
1

1

1

1

1
1

1
1

1

N 1

1

1

1

1

1

N

Figure 5.1: Server Architecture

alias and in the user’s color. This color matches that to which the
text is changed when that user marks or edits a section of the text.

4. THE CLIENT

The client is actually a combination of the GUI and a messaging
facility which handles the dialog of the collaboration server.

4.1 The GUI Event Mechanism
The GUI uses an event mechanism to handle mouse clicks, key-

strokes, etc. This event mechanism is not synchronized with the
message stream from the server which poses a problem. The client
uses a thread to asychronously intercept server messages and inserts
an equivalent message in the GUI’s event queue. This permits server
messages to interleave with conventional GUI events in a non-intru-
sive way. Originally we tried directly manipulating the GUI
components via GUI method calls in response to server messages.
This strategy caused the GUI to become unstable since it might be
processing an event while simultaneously being modified by the
server messaging code. After careful study of the GUI event
mechanism we discovered a means of introducing application specific
events to the GUI’s event queue.

4.2 The DataObject Class
The client process uses an instance of the DataObject class to

parse server generated messages. As the server also uses this same
class we ensure an agreement between the two processes regarding
message format and content. The Client class exports a set of methods
which the GUI classes used to converse with the server. This
approach centralizes all server communication within the Client class.

5. THE SERVER
The server is responsible for handling all communication with a

client. The following subsections describe how the server handles
this communication. Topics to be discussed include the following:
1) the server architecture,
2) the management of client connections,
3) shared data and client communication, and
4) synchronization issues.

5.1 Server Architecture

The server architecture is illustrated using the Booch methodol-
ogy for object-oriented design and analysis (Booch 1994). Figure 5.1
contains the class diagram depicting the relationships and inheritance
between the classes used to implement the server. For an explanation
of the Booch notation refer to the Appendix.

4

:Server l isten_socket:
ServerSocket

c:Connect ion

Server started
using start().

1:run()

connect ions:
Vector

vulture:
Vulture

2: Socket accept()

3: Connection(Socket, Vulture, ClientPort,
UserAlias, BlockedRange, TextFile)

4: addItem(Connection)

5: notify()

6: removeElementAt()

Figure 5.2: Object Diagram of a Client Connection

5.2 Managing Client Connections
The server must have the ability to handle more than a single cli-

ent. The server provides this ability using a Java class called the
ServerSocket. The ServerSocket only listens on a specified port for
clients to connect. When a client connects, the ServerSocket creates a
new thread with its own socket for that client to communicate
through. All subsequent interactions with that client are handled by
the server thread created for that client. The object diagram in Fig.
5.2 depicts the role of the ServerSocket class and the addi-
tion/removal of clients.

The numbers preceding the method names indicate the sequence
of events that repeatedly occur within the server. Each client that
connects to the server is stored in a vector called connections. A vec-
tor is a built in Java class that implements an array which grows in
size as necessary. Figure 5.3 shows a diagrammatic view of the
vector of connections. Each connection object stored in the vector has
a separate thread of execution. When the client disconnects it is
removed from the vector of connections using the Vulture class. This
is depicted in steps 5 and 6 above.

1 2 n
Connection 1
separate thread
of execution

Connection 2
separate thread
of execution

. Connection n
separate thread
of execution

Figure 5.3: Vector of connections

Shared Data and Client Communication . Shared data and
client communication is achieved using the classes in the class
diagrams represented in Fig. 5.4.

Socket . Since Java was designed from the ground up with
distributed Internet applications in mind, it has several classes that
make communication through sockets a very simple process. The
Socket class is a built in Java class that implements a socket for
interprocess communication. The class uses two other Java classes
that allow reading from the socket and writing to the socket as if one
were reading and writing to a file. These classes are
DataInputStream and PrintStream.

ClientPort. The ClientPort class is a class used to write
information from a client to all other clients involved in collaborating
on the shared document. It is created to take advantage of the event
driven Java socket class. Whenever a client joins the document
sharing session, the client’s PrintStream (i.e.-the location where it
receives data from the server) is stored in a vector that is part of
ClientPort. Any time a message from one client needs to be broadcast
to all other clients, ClientPort cycles through it’s vector of
PrintStreams writing out the message. The advantage to this
approach is that it eliminates the need for the server to store and
manage messages between clients.

TextFile . The TextFile class is used to encapsulate all
operations performed on the shared document. These operations
include opening the file and preparing it for editing, updating it’s
contents and saving it to disk. The file is opened and loaded into
memory as soon as the server is started. All updates to the shared
document occur at the request of a client and the file is saved to disk
when all clients exit.

5

Socke t

D a t a I n p u t S t r e a m

Pr in tS t ream

Cl ientPor t B l o c k e d R a n g eUserA l ias TextFi le

Vec to r
Vec to r

Fi le

Da taOb jec t

1

1

1
1

1

1

1

1

1

N

1

1

1

1

N

1

Figure 5.4: Shared Data Class Diagram

BlockedRange. The BlockedRange class works hand in hand
with the TextFile class in managing the shared document. The
BlockedRange class uses a vector to store each client’s begin and end
location of the range of text they are editing. Each time an update
takes place, the range blocked by the client requesting the update is
retrieved and used in updating the file. An important aspect to
consider during the update process is that when a client requested
update takes place, the other client’s blocked range values are no
longer valid. To handle this aspect, the TextFile class updates each
of the remaining clients blocked range.

UserAlias. The UserAlias stores the user name of each client
that joins the document sharing session. This information is
important so that all clients know who is participating in the session.

Shared Data Script . Figure 5.5 displays a script diagram
showing the interactions of the shared data and client communication
classes. It demonstrates the passing of messages between the classes
in relative order of when they occur.

5.3 Synchronization
The main issue faced in implementing the server was

synchronizing access to the shared data. As depicted earlier, each
client communication (a Connection object) has its own separate
thread of execution. This implies that a connection object or many of
the connection objects may want access to the shared data (i.e.-
request a file update or request a range block, and so forth) at the
same time. Synchronized methods are used to ensure that only one

connection is changing the shared data at any given time. Java
provides this ability through the synchronized keyword. When that
keyword is placed before a class method, it indicates to Java that the
method modifies the internal state of the class. Before Java runs the
method, it obtains a lock on the class. This ensures that no other
threads are modifying the class simultaneously.

6. CONCLUSIONS
We have presented a distributed Java application that allows

several people, possibly at different locations, to edit the same file at
the same time while exchanging comments on the changes they are
bringing to the file. Even though it is still a prototype, it provides a
vivid demonstration of the benefits of collaborative editing.

We would also like to mention that this was the first Java
application for the authors. Despite a few initial misgivings about the
lack of some customary programming constructs such as C pointers,
we found Java ideally suited for the rapid development of portable
distributed applications.

REFERENCES
Booch, G., 1994, Object-Oriented Analysis and Design, Second

edition, Addison-Wesley,1994.

Brinch Hansen, P., 1973, Operating Systems Principles,
Prentice-Hall.

Flannagan, D., 1996, Java in a Nutshell, First edition, O’Reilly
and Associates.

6

:Connecton :Data InputSt ream :Pr intStream :Cl ientPort :UserAl ias:TextFi le :B lockedRange :DataObject
Run()
Read Socket
Determine type of DataObject
if INITIAL
Add user a l ias
Tel l this cl ient about other cl ients.
Tel l th is c l ient about blocks.
Tel l other cl ients about this cl ient 's arr ival .
Send cl ient f i le contents.

e lse i f CHAT
Tel l other c l ients about the CHAT.

e lse i f BLOCK
Add b lock range

e l se i f NEWTEXT
Update F i le
Adjust b locked ranges
Remove b locked range
Tel l al l other cl ients about new text

elsei f EXIT
Remove c l ien t

Tel l al l other cl ients about this exit ing cl ient.
i f Last Cl ient
 Save f i le contents

readLn()
GetDataType()

addAl ias()
pr intAl ias()

pr intBlock()
Tel lCl ient()

pr int ln()

Tel lCl ient()

addBlock()

updateFi le()

removeBlock()
Tel lCl ient()

R e m o v e
Cl ient()

Tel lCl ient()

saveFi le()

ad jus tRange()

Figure 5.5: Interaction Diagram of Shared Data and Client Communication Classes

Hoare, C. A. R., 1974, “Monitors: An Operating Systems Structuring
Concept,” Communications of the ACM, Vol. 17, No. 10, pp.
549-557. Erratum in Communications of the ACM, Vol. 18, No. 2,
pp. 95.

Silberschatz. A. and Gavin, P., 1994, Operating Systems Concepts, 4th Edi-
tion, Addison-Wesley.

Walnum, C., 1996, JAVA by Example, Que Corporation.

7

APPENDIX:
THE BOOCH NOTATION

Class name Object name

Text

Notes

Class Icons

Class relat ionshi p s

Inheritance

has

using

A object name only
:C object class only
A:C object name and c lass

