
LIMITING THE CLIENT BANDWIDTH OF BROADCASTING PROTOCOLS
FOR VIDEOS ON DEMAND

Jehan-François Pâris1

Department of Computer Science
University of Houston

Houston, TX 77204-3475
E-mail: paris@acm.org

Darrell D. E. Long2

Department of Computer Science
Jack Baskin School of Engineering

University of Cali fornia
Santa Cruz, CA 95064

E-mail: darrell@cse.ucsc.edu

1 This research was supported in part by the Usenix Association and the Texas Advanced Research Program under grant

003652-0124-1999.
2 This research was supported by the National Science Foundation under grant PO-10152754.

KEYWORDS
video-on-demand, broadcasting protocols, fast broadcasting,
new pagoda broadcasting.

ABSTRACT

Broadcasting protocols can lower the cost of video-on-
demand services by more efficiently distributing all videos
that are simultaneously watched by many viewers. The
most efficient broadcasting protocols require a customer set-
top box capable of capturing data from five to seven video
channels at the same time.

We show how to modify existing broadcasting
protocols so that their client bandwidth would never exceed
three to four channels and apply our method to the fast
broadcasting and the new pagoda broadcasting protocols.
Our data show that this modification has only a moderate
effect on the overall performance of the two protocols
because their server bandwidth never increases by more
than 15 percent.

1. INTRODUCTION

In the last five years, there have been numerous
proposals aiming at reducing the cost of providing video-on-
demand (VOD) services. Many, if not most, of these pro-
posals have focused on finding ways to distribute the top ten
or twenty so-called “hot” videos more efficiently. The sav-
ings can be considerable because these videos are expected
to account for about 40 percent of the total consumer
demand (Dan et al. 1996).

Broadcasting protocols differ from all other proposals
by their proactive approach: rather than waiting for cus-
tomer requests, they continuously rebroadcast each video
according to a deterministic schedule. The simplest
broadcasting strategy is to retransmit each video on several
dedicated data channels at equal time intervals. The major
problem with this approach is the number of channels per
video required to achieve a reasonable waiting time. Much
more impressive results can be achieved by increasing the
functionality of the set-top box (STB) connecting the cus-
tomer television set with the VOD service (Viswanathan

and Imielinski 1996). With a STB capable of
simultaneously receiving several channels and storing their
contents until they are consumed, we can use much less
bandwidth to obtain the same waiting times. For example,
achieving a maximum waiting time of two minutes for a
two-hour video only requires a bandwidth equal to five
times the consumption rate of the video (Pâris 1999).

This approach raises two issues. First, it assumes that
the STB has enough local storage to store up to one half of
each video being watched. In the current state of memory
technology, this implies the presence of a hard drive in each
STB. Second, the approach requires a STB capable of
receiving data from several channels at the same time. This
cannot be done without significant increases in the cost of
the STB network interface.

The skyscraper broadcasting protocol (Hua and Sheu
1997) has already addressed these two issues. Unlike all
other broadcasting protocols, skyscraper broadcasting never
requires the customer STB to receive data from more than
two channels at the same time. In addition, the protocol
controls the amount of data the STB must store while the
customer is watching a video. This approach has a major
drawback, namely a very significant increase in the server
bandwidth required to distribute the videos. Hence, the
potential savings in STB costs achieved by skyscraper
broadcasting would require bigger, more expensive video
servers and a costlier network infrastructure.

There are at least two major arguments in a favor of a
less radical approach. First, we can safely predict that
within one or two years it will become difficult to buy a
standard size disk drive that cannot store at least an entire
video. Hence, the issue of reducing the STB storage
requirements of broadcasting protocols will become moot.
Buffering the entire contents of each video in the STB
would also allow purely local implementations of pause and
rewind interactive controls without any server intervention.
Second, a recent study by Eager, Vernon and Zahorjan
(Eager et al. 1999) indicates that proactive video distribution
protocols that limit their client bandwidth to two concurrent
channels wil l always require much more server bandwidth

than protocols allowing concurrent downloads from three or
four concurrent channels.

The solution we propose reduces the client bandwidth
requirements of existing broadcasting protocols to three or
four concurrent channels rather than designing new proto-
cols. This wil l allow us to build upon the strengths of
existing broadcasting protocols such as fast broadcasting
(Juhn and Tseng 1998) and new pagoda broadcasting (Pâris
1999). As we will see, this less radical approach wil l also
result in much more moderate increases of the server band-
width than using a skyscraper broadcasting protocol.

2. BROADCASTING PROTOCOLS

The simplest video broadcasting protocol is staggered
broadcasting (Dan et al. 1996). It consists of broadcasting
on separate data channels multiple copies of the same video
at staggered starting times. Staggered broadcasting is
simple to implement and does not require any changes to the
customer STB. Unfortunately, it requires a fairly large
number of channels per video to achieve a reasonable wait-
ing time. Consider, for instance, a two-hour video,
approximately the average duration of a feature movie.
Guaranteeing a maximum waiting time of 10 minutes would
require starting a new instance of the video every 10
minutes and a total of 12 channels.

The past four years have seen the development of many
efficient broadcasting protocols starting with the pyramid
broadcasting protocol (Viswanathan and Imielenski 1996).
All these protocols divide each video into segments that are
simultaneously broadcast on multiple data channels. One of
these channels transmits only the first segment of the video.
The other channels transmit the remaining segments. When
customers want to watch a video, they wait for the begin-
ning of the first segment on the first channel. While they
start watching that segment, their STB starts downloading
enough data from the other channels to allow it to play each
segment of the video in sequence. Given the fairly large
number of existing broadcasting protocols, we will focus the
remainder of our discussion on the two broadcasting proto-
cols that are the most relevant to our proposal, namely fast
broadcasting and new pagoda broadcasting.

Fast broadcasting (FB) (Juhn and Tseng 1998) allo-
cates to each video to be broadcast k data channels whose
bandwidths are equal to the video consumption rate b. It
then partitions the video into 2k-1 segments S1 to S2

k-1 of
equal duration d. As Figure 1 indicates, the first channel
continuously rebroadcasts segment S1, the second channel
transmits segments S2 and S3, and the third channel trans-
mits segments S4 to S7. More generall y, channel j with
1 ≤ j ≤ k transmits segments S2

j-1 to S2
j
-1. Define a slot as a

time interval equal to the duration of a segment. To prove
the correctness of the protocol, we need only to observe that
each segment i with 1 ≤ i ≤ 2k-1 is rebroadcast at least once
every i slot. Then any client STB starting to receive data
from all broadcasting channels wil l always receive on time
all segments on time.

First Channel S1 S1 S1 S1

Second Channel S2 S3 S2 S3

Third Channel S4 S5 S6 S7

Figure 1. The first three channels for fast broadcasting (FB)

The new pagoda broadcasting (NPB) (Pâris 1999)
protocol improves upon the FB protocol by using a more
complex segment-to-channel mapping. As seen in Figure 2,
the NPB protocol can pack nine segments into three chan-
nels whereas the FB protocol could only pack seven
segments. Hence the segment size wil l be equal to one
ninth of the duration of the video and no customer would
ever have to wait more than 14 minutes for a two-hour
video.

First Channel S1 S1 S1 S1 S1 S1

Second Channel S2 S4 S2 S5 S2 S4

Third Channel S3 S6 S8 S3 S7 S9

Figure 2. The first three channels for the NPB protocol

3. OUR APPROACH

A common feature of all broadcasting protocols is that the
data that are broadcast on each channel periodicall y repeat
themselves. In addition, the channels containing the first
segments of the video repeat themselves more frequently
than the channels containing the later segments. Consider,
for instance, the case of the fast broadcasting protocol.
Looking back at Figure 1, we can see that the contents of
channels 1, 2 and 3 respectively repeat themselves every 1,
2 and 4 slots.

Let us focus our attention now to what happens when a
VOD customer starts watching a video. With the sole
exceptions of staggered broadcasting and skyscraper broad-
casting, all broadcasting protocols assume that the customer
STB will immediately start receiving data from all k chan-
nels that are broadcasting segments of that video. Client
bandwidth and server bandwidth will then be equal.
However, they will not remain equal very long because the
STB will quickly start to drop the channels that have started
to repeat themselves.

This observation provides the basis for our new
method. Rather than letting the STB receive data from all k
channels that are broadcasting video segments, we will only
allow it to receive data from the first m of these k channels.
Downloading data from the k – m remaining channels wil l
be progressively allowed as STB starts dropping some of
the first m channels. The STB will start receiving data from
channel m + 1 when it is finished with the first channel. It
will then start receiving data from channel m + 2 when it is
finished with the second channel and the process will con-
tinue until the STB is finished with channel k – m and starts
receiving data from channel k.

This new approach will have direct consequences for
the segment-to-stream mapping. The correctness criterion
for a conventional broadcasting protocol is to have each

segment Si repeated at least once every i slots. It wil l con-
tinue to apply to the first m of the k channels that we will
use to broadcast the video. Consider now a segment Si that
is mapped into one of the remaining k – m channels of the
video, say, channel l. The STB will not be able to download
segments from this channel until it is finished with channel
k – m, say after slot nk–m. To be received on time by the
STB, segment i will now have to appear at least once within
the slot interval starting with slot nk–m + 1 and ending with
slot i. To guarantee that this wil l always happen, segment Si

will now have to be repeated at least once every i – nk–m

slots instead of every i slots.

This more restrictive correctness criterion wil l result in
an increase of the maximum waiting time of the protocol.
Since we need now to repeat more frequently the segments
that are mapped into the last k – m channels of the video, we
will not be able to map as many segments into these chan-
nels and wil l have to partition the video into fewer
segments. Recall ing that the maximum waiting time is
always equal to the size of segment S1, we see that limiting
the client bandwidth without increasing the server band-
width will always result in increasing the maximum waiting
time of the protocol.

We will now explain how to use our approach to limit
the client bandwidth of FB and NPB protocols to three or
four channels. To simpli fy the computation of nk–m, we will
always assume that the STB uses a greedy downloading
policy that always downloads the first arriving instance of a
segment.

3.1 Fast broadcasting protocols limiting the client
bandwidth

Let us first consider a FB protocol li miting the client band-
width to three channels (FB-3). As Table 1 shows, its first
three channels are identical to the first three channels of the
original FB protocol. Hence segment S8 will be the first
segment mapped into channel 4.

Since the FB-3 protocol l imits the client bandwidth to
three channels, the STB will not be able to receive data from
channel 4 until it is finished with channel 1. Because
channel 1 endlessly repeats segment S1, this would introduce
a one-slot delay. As a result the contents of channel 4 will
have to be repeated every 8 – 1 = 7 slots and we will be able
to map 7 segments into that channel. Hence channel 4 will
contain segments S8 to S14 and S15 will be the first segment
into channel 5.

Because the STB will not be allowed to receive data
from channel 5 until it is finished with channel 2, the
process will start with a delay of two slots. Hence, the con-
tents of channel 5 will have to be repeated every
15 – 2 = 13 slots and channel 5 will contain segments S15 to
S27. Note that partitioning a video into 27 segment guaran-
tees that the maximum client waiting time will never exceed
1/27 of the video duration. Five channels thus suff ice to
guarantee a maximum waiting time of 4 minutes and 27
seconds for a two-hour video.

Table 1. The first ten channels for the FB-3 protocol

Channel Delay
(slots)

Segments Total number of
segments

1 0 S1 1

2 0 S2 to S3 3

3 0 S4 to S7 7

4 1 S8 to S14 14

5 2 S15 to S27 27

6 4 S28 to S51 51

7 8 S52 to S95 95

8 15 S96 to S176 176

9 28 S177 to S325 325

10 52 S326 to S599 599

Table 2. The first ten channels for the FB-4 protocol

Channel Delay
(slots)

Segments Total number of
segments

1 0 S1 1

2 0 S2 to S3 3

3 0 S4 to S7 7

4 0 S8 to S15 15

5 1 S16 to S30 30

6 2 S31 to S59 59

7 4 S60 to S115 115

8 8 S116 to S223 223

9 16 S224 to S431 431

10 31 S432 to S599 832

We could achieve even lower waiting times by adding
more channels. We wil l not detail the segment mapping
process for these channels as it is well summarized in Table
1. Starting with channel 7, the delays become slightly more
complicated to compute. The STB will not be allowed to
receive data from channel 7 until i t is finished with channel
4. The new factor to take into account is that the down-
loading process for channel 4 had to wait until the STB had
finished downloading segment S1 from the first channel. So
the total delay for channel 7 is 1 + 7 = 6 slots.

There is little to say about the FB protocol li miting the
client bandwidth to four channels (FB-4). As Table 4
shows, its first four channels are identical to the first chan-
nels of the original FB protocol. As a result, the FB-4
protocol will be able to pack eight segments in channel 4,
that is one more than was possible under the FB-3 protocol.
Since the STB wil l now be allowed to receive data from
channel 5 as soon as it is finished with channel 1, we will
also be able to pack more segments in channel 5.

3.2 New pagoda broadcasting protocols limiting the
client bandwidth

Let us consider first an NPB protocol l imiting the client
bandwidth to three channels (NPB-3). As Table 3 indicates,
the first three channels are identical to the first three chan-
nels of the original NPB protocol. Hence segment S10 wil l
be the first segment mapped into channel 4.

Since the NPB-3 protocol l imits the client bandwidth to
3 channels, the STB wil l not be able to receive data from
channel 4 until it is finished with channel 1. Because chan-
nel 1 endlessly repeats segment S1, this would introduce a
one-slot delay. As a result, segment S10 will have to be
repeated every 10 – 1 = 9 slots and, more generally, seg-
ment Si will have to be repeated once every i – 1 slots. To
map the maximum number of segments into channel 4, we
will partition the channel into sets of three consecutive slots
and assume they constitute rows of a large matrix repre-
senting the segment-to-slot mapping (Pâris 1999). We wil l
allocate the first column of that matrix to segments S10 to
S12, the second column of the matrix to segments S13 to S16

and the third column of the matrix to segments S17 to S21:

S10 S13 S17

S11 S14 S18

S12 S15 S19

... S16 S20

... ... S21

The segment-to-slot mapping for the first 15 slots of chan-
nel 4 will then repeat segments S10 to S12 once every 9 slots,
segments S13 to S16 once every 12 slots and segments S17 to
S21 once every 15 slots.

Because the STB will not be allowed to receive data from
channel 5 until it is finished with channel 2, the process will
start with a delay of 2 slots. Hence, an arbitrary segment Si

will have to be repeated every i – 2 slots. We wil l partition
the channel into groups of six consecutive slots and repeat:

a) segments S22 to S27 once every 18 slots,

b) segments S28 to S35 once every 24 slots,

c) segments S22 to S27 once every 18 slots,

d) segments S28 to S35 once every 24 slots,

e) segments S36 to S40 once every 30 slots, and

f) segments S41 to S46 once every 36 slots.

With five channels, we can partition the video into 46
segments, which guarantees that the maximum client wait-
ing time wil l never exceed 1/46 of the video duration, that
is, 2 minutes and 36 seconds for a two-hour video. We
could achieve even smaller viewing delays by increasing the
total bandwidth allocated to each video. For instance, add-
ing a sixth channel would allow partitioning each video into
107 segments and achieving a maximum viewing delay of
67 seconds for a two-hour video.

Table 3. The first eight channels for the NPB-3 protocol

Channel Delay
(slots)

Segments Total number
of segments

1 0 S1 –

2 0 S2, S4 andS5 –

3 0 S3, S6 to S9 9

4 1 S10 to S21 21

5 4 S22 to S46 46

6 6 S47 to S107 107

7 16 S108 to S249 249

8 40 S250 to S582 582

Table 4. The first eight channels for the NPB-4 protocol

Channel Delay
(slots)

Segments Total number
of segments

1 0 S1 –

2 0 S2, S4, S8,and
S9

–

3 0 S3, S6, S7,

S12 to S14,

S25 and S26

–

4 0 S5, S10, S11,

S15 to S24

26

5 1 S27 to S62 62

6 8 S63 to S140 140

7 24 S141 to S318 318

8 24 S319 to S791 791

Table 4 summarizes the segment to channel mapping
for the NPB protocol li miting the client bandwidth to four
channels (NPB-4). Its first four channels are identical to the
first channels of the original NPB protocol. One particu-
larity worth mentioning results from the fact that the NPB
protocol repeats that the contents of channels 3 and 4 every
24 slots. Hence, the STB wil l start receiving data from both
channels 7 and 8 at the same time.

4. DISCUSSION

Figure 3 displays the server bandwidth requirements of
the FB-3 and FB-4 protocols as well as those of the original
FB protocol and the skyscraper broadcasting protocol with a
maximum width of 52. Bandwidths on the x-axis are
expressed in channels, that is, in multiples of the video con-
sumption rate. The corresponding maximum customer
waiting times are all expressed as fractions of the video
duration.

As one can see, both FB-3 and FB-4 protocols require
much less server bandwidth than skyscraper broadcasting to
achieve the same maximum waiting times. The bandwidth

4

5

6

7

8

9

10

0 0.01 0.02 0.03 0.04 0.05

Maximum waiting time as fraction of video duration

S
er

ve
r

b
an

d
w

id
th

 (
ch

an
n

el
s)

Skyscraper

FB-3

FB-4

Fast Broadcasting

Figure 3. Compared server bandwidth requirements of the
FB-3 and FB-4 protocols

requirements of both protocols always remain very close to
those of the original FB protocol with the FB-3 protocol
being only slightly worse than the FB-4 protocol.

As Figure 4 indicates, similar observations can be made
about the NPB-3 and the NPB-4 broadcasting protocols.
The bandwidth requirements of the NPB-4 protocol always
remain very close to bandwidth requirements of the NPB
protocol while the NPB-3 protocol never exceed these by
more than 15 percent. The only major difference lies in the
much wider gap between the performances of skyscraper
broadcasting and the three pagoda-based protocols. Sky-
scraper broadcasting requires 10 channels to achieve a
maximum waiting time of less than a minute for a two-hour
video, that is 1/7200 = 0.000139 times the video duration,
while all three pagoda-based protocols achieve lower wait-
ing times with only eight channels.

Our data clearly indicate that it is possible to reduce the
client bandwidth of broadcasting protocols to three channels
without significantly affecting their server bandwidth. It
remains to be seen whether the much higher server band-
width requirements of skyscraper broadcasting are an arti-
fact of the protocol or a direct result of its very low client
bandwidth.

5. CONCLUSIONS

One of the most promising approaches for reducing the cost
of video-on-demand services is to broadcast continuously
the most frequently requested videos. The sole serious
drawback of this approach is that most broadcasting proto-
cols require a customer set-top box capable of simultane-
ously capturing data from five to eight video channels.

4

5

6

7

8

9

10

0 0.01 0.02 0.03 0.04 0.05

Maximum waiting time as fraction of video duration

S
er

ve
r

b
an

d
w

id
th

 (
ch

an
n

el
s)

Skyscraper

NPB-3

NPB-4

New Pagoda

Figure 4. Compared server bandwidth requirements of the
NPB-3 and NPB-4 protocols

We have shown how to modify existing broadcasting
protocols so that their client bandwidth would never exceed
three to four channels. We have applied the method to the
fast broadcasting and the new pagoda broadcasting proto-
cols. We found that the fast broadcasting protocol was
somewhat less affected by the restriction than the new
pagoda broadcasting protocol, whose server bandwidth
could increase by up to 15 percent.

More work is still needed to apply the method to other
broadcasting protocols, among which we should mention
the recent GEBB protocol (Hu et al. 1999).

REFERENCES
Eager, D. L.; M. K. Vernon; and J. Zahorjan. 1999. “Minimizing
bandwidth requirements for on-demand data delivery.” In Proc.
5th Int. Workshop on Advances in Multimedia Information Systems
(Indian Wells, CA, Oct), pages 80–87.
Dan, A.; D. Sitaram; and P. Shahabuddin. 1996. “Dynamic
batching poli cies for an on-demand video server.” Multimedia
Systems, 4 no. 3 (June):112–121.
Hu, A.; I. Nikolaidis; and P. van Beek. 1999. “On the design of
eff icient video-on-demand broadcast schedules.” In Proc. 7th Int.
MASCOTS Symposium (College Park, MD, Oct.), pages 262–269
Hua, K. A. and S. Sheu. 1997. “Skyscraper broadcasting: a new
broadcasting scheme for metropolitan video-on-demand systems.”
In Proc. ACM SIGCOMM '97 Conference (Sep.), pages 89–100.
Juhn, L. and L. Tseng. 1998. “Fast data broadcasting and receiv-
ing scheme for popular video service. IEEE Transactions on
Broadcasting, 44, no.1 (Mar.):100–105.
Pâris, J.-F. 1999. “A simple low-bandwidth broadcasting protocol
for video on demand.” In Proc. 8th ICCCN Conference (Boston-
Natick, MA, Oct.), pages 690–697.
Viswanathan, S. and T. Imielinski. 1996. “Metropoli tan area
video-on-demand service using pyramid broadcasting.” Multime-
dia Systems, 4 no. 4:197–208.

