
A Broadcasting Protocol for Video-on-Demand
Using Optional Par tial Preloading

Jehan-François Pâris1

Department of Computer Science, University of Houston, Houston, TX 77204-3010 ������� �	��
��	��
	�	� ����

Abstract. Broadcasting protocols for video-on-demand normally require
customers to wait for a few minutes before starting to watch the video of their
choice. The easiest way to avoid this delay is to preload in each customer set-
top-box the first few minutes of each video. We present here a broadcasting
protocol making this requirement optional: customers are offered the option of
preloading the first few minutes of one or more videos in order to eliminate the
small delay they would otherwise experience. We also show that this feature can
be implemented at a very reasonable cost.

Keywords: video-on-demand, broadcasting protocol, pagoda broadcasting,
zero-delay broadcasting.

1 Introduction

Broadcasting protocols are expected to play an important role in the commercial
success of video-on-demand services because they offer the most efficient way of
distributing very popular videos to large metropolitan audiences. Unlike other video
distribution protocols, broadcasting protocols distribute video contents according to a
fixed schedule guaranteeing that all customers will receive these contents on time. As
a result, the video server workload is not affected by the number of customers using the
service.

All recent broadcasting protocols for video-on-demand derive in some fashion from
Viswanathan and Imielinski’s pyramid broadcasting protocol [10]. Like it, they
partition each video into segments that are simultaneously broadcast on different
channels. They also require customers to be connected to the service through a “smart”
set-top box (STB) capable of (a) receiving data at rates exceeding the video
consumption rate and (b) storing locally the video data that arrive out of sequence.
Finally, they assume that customers will watch videos in sequential fashion without
any fast forwards. This setup allows broadcasting protocols to transmit the various
segments of each video using less and less bandwidth as the video progresses. Each
video segment will typically require less bandwidth than its predecessor with the initial
segment thus requiring the most bandwidth.

1 Supported in part by the Texas Advanced Research Program under grant 003652-0124-1999
and the National Science Foundation under grant CCR-9988390.

One major limitation of this approach is that broadcasting protocols cannot provide
true instant access to videos without dedicating an inordinate amount of bandwidth to
the first few segments of the video. Partial preloading [4] solves this problem by
preloading in customer STBs the first few minutes of all the videos being broadcast. It
provides zero-delay access to these videos while significantly reducing the server
aggregate bandwidth.

We propose to extend this approach to cases where we cannot expect all customer
STBs to always have received and stored the first few minutes of all videos being
offered. Optional partial preloading (OPP) assumes instead that there will be two
kinds of customers for each video, namely, thOse who have the first few minutes of the
video preloaded in their STBs and those who will need to receive the whole video. The
protocol will provide instant access to the video to all the customers who have its first
few minutes preloaded in their STBs while requiring other customers to wait for at
most a few minutes.

As we will see, this flexibility comes with a cost. First, there will be no bandwidth
savings, as we now have to broadcast the first few minutes of each video for the sake of
the customers not having these minutes preloaded in their STB. Second, the higher
quality of service provided to customers who have the first few minutes of the video
preloaded in their STBs will require more frequent transmissions of some video
segments and will result in an increase of the waiting time for the other customers. We
found that the best way to control this increase is to combine optional partial
preloading with a fixed-delay broadcasting protocol such as the fixed-delay pagoda
broadcasting protocol (FDPB) [5]. For instance, an FDPB protocol allocating five
broadcasting channels to each video can provide zero-delay access to all customers
who preloaded the first two minutes and half of the video while requiring other
customers to wait 97 seconds.

The remainder of this paper is organized as follows. Section 2 reviews relevant
previous work on broadcasting protocols. Section 3 discusses optional partial
preloading and introduces our FDPB protocol with optional partial preloading. Section
4 evaluates its performance and Section 5 has our conclusions.

2 Previous Work

Given the large number of video broadcasting protocols that have been proposed since
Viswanathan and Imielinski’s pyramid broadcasting protocol, we will only mention
here those protocols that are directly relevant to our work. The reader interested in a
more comprehensive review of broadcasting protocols for video-on-demand may want
to consult reference [1].

The simplest broadcasting protocol is Juhn and Tseng's fast broadcasting (FB)
protocol [2]. The FB protocol allocates to each video k data channels whose band-
widths are all equal to the video consumption rate b. It then partitions each video into
2k-1 segments, S1 to S2

k-1, of equal duration d. As Figure 1 indicates, the first channel
continuously rebroadcasts segment S1, the second channel transmits segments S2 and
S3, and the third channel transmits segments S4 to S7. More generally, channel j with
1 ≤ j ≤ k transmits segments S2

j-1 to S2
j
-1.

First Channel S1 S1 S1 S1

Second Channel S2 S3 S2 S3

Third Channel S4 S5 S6 S7

Figure 1. The first three channels for the FB protocol.

First Channel S1 S1 S1 S1 S1 S1

Second Channel S2 S4 S2 S5 S2 S4

Third Channel S3 S6 S8 S3 S7 S9

Figure 2. A PB protocol with three channels

When customers want to watch a video, they wait until the beginning of the next
transmission of segment S1. They then start watching that segment while their STB
starts downloading data from all other channels. Hence the maximum customer
waiting time is equal to the duration of a segment. Define a slot as a time interval
equal to the duration of a segment. To prove the correctness of the FB protocol, we
need only to observe that each segment i with 1 ≤ i ≤ 2k – 1 is rebroadcast at least once
every i slot. Then any client STB starting to receive data from all broadcasting
channels will always receive all segments on time.

The pagoda broadcasting (PB) [3] protocol improves upon the FB protocol by using
a more complex segment-to-channel mapping. As seen on Figure 2, the PB protocol
can pack nine segments into three channels while the FB protocol can only pack seven
of them. Hence the segment size will be equal to one ninth of the duration of the video
and no customer would ever have to wait more than 14 minutes for a two-hour video.

Neither the FB protocol nor the PB protocol require customer STBs to wait for any
minimum amount of time. As a result, there is no point in requiring customer STBs to
start downloading data while customers are still waiting for the beginning of the video.
The newer fixed-delay pagoda broadcasting (FDPB) protocol [5] requires all users to
wait for a fixed delay w before watching the video they have selected. This waiting
time is normally a multiple m of the segment duration d. As a result, the FDPB
protocol can partition each video into much smaller segments than either FB or PB
with the same number of channels. Since these smaller segments can be packed much
more effectively into the k channels assigned to the video, the FDPB protocol achieves
smaller customer waiting times than FB and PB protocols with the same number of
channels.

Figure 3 summarizes the segment-to-channel mappings of a FDPB protocol
requiring customers to wait for exactly 9 times the duration of a segment. Since
customers have to wait for 9 times that duration, the first segment of the video will
need to be broadcast at least once every 9 slots. Hence the protocol will use time
division multiplexing to partition the first channel into √9 subchannels with each
subchannel containing one third of the slots of the channel. The first subchannel will
continuously broadcast segments S1 to S3 ensuring that these segments are repeated
exactly once every 9 slots.

Channel Subchannel First Segment Last Segment

1 S1 S3

2 S4 S7 C1

3 S8 S12

C2 All 5 subchannels S13 S42

C3 All 7 subchannels S43 S116

C4 All 11 subchannels S117 S308

C5 All 17 subchannels S293 S814

Figure 3. Segment to channel mappings of a FDPB protocol with m = 9.

Observe that the next segment to be broadcast, segment S4 needs to be broadcast
once every 12 slots. Hence the second subchannel will transmit segments S4 to S7
ensuring that these segments are repeated exactly once every 12 slots. In the same
way, the third subchannel will broadcast segments S8 to S12 ensuring that these
segments are repeated exactly once every 15 slots.

The process will be repeated for each of the following channels partitioning each
channel into a number of subchannels equal to the square root of the minimum
periodicity of the lowest numbered segment to be broadcast by the channel. Hence
channel C2 will be partitioned into 5 subchannels because segment S13 needs to be
repeated every 21 slots and √21 � 5. As a result, the protocol will map segments S13 to
S42 into the 5 subchannels of the second channel. Repeating the same process on
channels C3 to C5, the protocol will be able to map 814 segments into five channels and
achieve a deterministic waiting time of 9/814 of the duration of the video, that is, 80
seconds for a two-hour video.

3 Optional Partial Preloading

Recall that all recent broadcasting protocols require customers to be linked to the
service through a STB capable of storing locally the video data that arrive out of
sequence. In the current state of storage technology, this implies having a disk drive in
each STB, a device already present in the so-called digital VCR’s offered by TiVo [8],
Replay [6] and Ultimate TV [9]. Today, the disk drives used in the cheapest computers
have capacities of at least 10 gigabytes, giving them the possibility of storing at least
three hours and half of video in MPEG-2 format.

Partial preloading [4] uses some of this disk capacity to preload, say, the first 6
minutes of the top 10 videos or the first 3 minutes of the top 20 videos. The technique
offers two major advantages. First it will provide instant access to these videos.
Second, it will reduce the bandwidth required to broadcast them as the first minutes of
each video could be broadcast much less frequently.

Channel Subchannel First Segment Last Segment

1 S10 S12

2 S12 S16 C1

3 S17 S21

C2 All 5 subchannels S22 S51

C3 All 7 subchannels S52 S125

C4 All 11 subchannels S126 S317

C5 Not used

Figure 4. Segment to channel mappings of a FDPB protocol
preloading the first 9 segments of a video.

Consider for instance the FDPB protocol discussed in the previous section and
assume that we preload in the customer STB the first 9 segments of each video. The
first segment of the video that will need to be broadcast will be segment S10 and this
segment will need to be broadcast at least once every 9 slots. As shown on Figure 4,
the protocol will partition the first channel into √9 subchannels with the first
subchannel broadcasting segments S10 to S12, the second subchannel transmitting
segments S13 to S16 and the third subchannel broadcasting segments S17 to S21. As one
can see, this mapping is almost identical to the mapping displayed on Figure 3, the sole
difference being that the first segment to be broadcast is now segment S10 instead of
segment S1.

Allocating four channels to the video would allow us to partition the video into 311
segments and offer zero-delay access to that video while requiring all customers to
preload 9/317 of it in their STB, that is, a little bit less than two minutes and a half of
video data for a two-hour video. We could thus provide a better quality of service
while using one less channel. A much more aggressive partial preloading policy could
only assign three channels to the video and require customers to preload 9/125 of each
video in their STB, that is, less than nine minutes of video data for a two-hour video.

The sole problem with partial preloading is that customers who do not have the first
few minutes of a video preloaded in their STB will not be able to watch that video.
Consider, for instance, the case of customers having just installed their “smart” set-top
box and wanting to watch a video. They would have to wait for up to one hour before
being able to watch the video of their choice. Similar delays would be experienced by
anyone not willing to have his or her STB permanently turned on.

We propose here a more flexible solution: customers who accept to preload in their
STB the first few minutes of selected videos will get true instant access to them while
other customers will be able to access the video after waiting for a few minutes. This
approach has two great advantages. First, it motivates customers to accept partial
preloading. Second, it takes care of the customers who have not preloaded these first
few minutes.

First Channel S1 S1 S1 S1 S1 S1

Second Channel S2 S2 S2 S2 S2 S2

Third Channel S3 S5 S3 S6 S3 S5

Fourth Channel S4 S7 S9 S3 S8 S10

Figure 5. A PB protocol with four channels offering instant access to the customers having
chosen to preload the first segment of the video in their STB.

Number of Segments Number of
Channels Original PB Protocol PB protocol with OPP

1 1 1

2 3 2

3 9 4

4 19 10

5 49 20

6 99 50

7 249 100

Figure 6. Comparing the number of segments broadcast by the original PB protocol and the
PB protocol with optional partial preloading (OPP) over the same number of channels.

The sole problem with making partial preloading optional is its cost. Consider the
case of a Pagoda Broadcasting protocol where customers can chose to preload the first
segment of the video. To ensure on time delivery of all video data, the second segment
must be broadcast in such a way its contents can be received while the customer is
watching the preloaded part of the video. Hence segment S2 must be repeated once
every slot. By induction on i, segment Si with i ≥ 2 will have to be repeated at least
once every i – 1 slots.

Figure 5 summarizes the resulting segment-to-channel mapping for the first four
channels. Comparing with the mappings of the original PB protocol in Figure 2, we
see that our new PB protocol would require 4 channels instead of 3 to broadcast 10
segments instead of 9. More generally, the protocol would always require one
additional channel to broadcast one additional segment. As seen on Figure 6, we
would need one extra channel to ensure that customers who do not preload wait the
same amount of time as before.

A better solution is to use a modified FDPB protocol. Consider for instance the case
of a FDPB protocol offering instant access to the customers having preloaded the first
12 segments of the video while requiring other customers to wait for 9 times the
duration of a segment. As shown on Figure 7, the segment mappings for the first
channel are identical to those of a FDPB protocol without optional partial prefetching:
the channel will broadcast the 12 first segments of the video over three subchannels.

Channel Subchannel First Segment Last Segment

1 S1 S3

2 S4 S7 C1

3 S8 S12

1 S13 S15

2 S16 S18

3 S19 S22
C2

4 S23 S27

C3 All 5 subchannels S28 S64

C4 All 8 subchannels S65 S162

C5 All 13 subchannels S163 S414

Figure 7. Segment to channel mappings of a FDPB protocol with m = 9 offering instant
access to the customers having preloaded the first 12 segments of the video.

The situation is quite different for the other channels. The first segment to be
broadcast by the second channel is segment S13. As before, customers who have not
preloaded the first 12 segments of the video will start viewing S13 after (a) having
waited for 9 times the duration of a segment and (b) having watched the first 12
segments of the video. Hence, these segment still need to be repeated at least once
every 9 + 12 = 20 slots. This is not true for the customers who had preloaded the first
12 segments of the video: since they have instant access to the video, they need to have
segment S13 repeated at least once every 12 slots. By induction on i, we find that all
segments Si with i ≥ 12 will need to be repeated at least once every i – 1 slots. We can
generalize our observation to the case of an FDPB protocol offering instant access to
the customers having preloaded the first np segments of the video while requiring other
customers to wait for m times the duration of a segment. The protocol will have to
repeat each segment Sj

a) at least once every m + i – 1 slots if i ≤ np, and
b) at least once every i – 1 slots if i > np.

Figure 7 shows the results of these tighter requirements. Since segment S13 has to be
repeated at least once every 12 slots, the second channel is now partitioned into 4
subchannels and will only broadcast segments S13 to S27, that is, 15 less segments than a
FDPB protocol without optional partial preloading. Comparing the mappings
displayed in Figure 7 with those displayed in Figure 3, we can see that the same
observation applies to all subsequent channels. For instance, a FDPB with optional
partial preloading using 5 channels and requiring customers who did not preload the
first 12 segments of the video to wait for a time equal to the duration of 9 segments will
be able to partition each video into 414 segments, that is, 388 less segments that the
original FDPB protocol. Hence, customers who did not preload the first 12/414 of the

Channel
Number of

subchannels First Segment Last Segment

C1 10 S1 S156

C2 12 S157 S400

C3 20 S401 S1051

C4 32 S1052 S2787

C5 53 S2788 S7461

Figure 8. Segment to channel mappings of a FDPB protocol with m = 100 offering instant
access to the customers having preloaded the first 156 segments of the video.

video will have to wait for a time equal to 9/414 of the video duration, that is, about
two minutes and half for a two-hour video. Instant access to the video will be provided
to the customers who have the 12 first segments of the video preloaded in their STB,
that is about three minutes and half of video data for the same two-hour video. In
contrast, the original FDPB protocol would have required all customers to wait for
9/802 of the video duration, that is, less than one minute and half for the same two-hour
video.

Even better results can be achieved by portioning each video into much smaller
segments with resulting increases of m and np. Figure 8 shows for instance the segment
to slot mappings for a FDPB protocol offering instant access to the customers having
preloaded the first 156 segments of the video while requiring other customers to wait
for 100 times the duration of a segment. As we can see, a FDPB with optional partial
preloading using 5 channels and requiring customers who did not preload the first 156
segments of the video will be able to partition each video into 7461 segments. Hence,
customers who did not preload the first 156/7461 of the video will have to wait for a
time equal to 100/7461 of the video, that is, 97 seconds for a two-hour video. Instant
access to the video will be provided to the customers who have the 156 first segments
of the video preloaded in their STB, that is about two minutes and half of video data for
the same two-hour video

4 Performance Analysis

In this section, we derive first lower bounds for the bandwidth requirements of fixed-
delay broadcasting protocols with and without partial preloading. We present then
some data for two FDPB protocols with and without optional partial preloading.

To compute these lower bounds, let us consider a video of duration D being
broadcast in such a way that all customers requesting the video wait for w time units
before starting the video. Let ∆t represent a small time interval starting at a location t
within the video. To avoid STB underflow, the contents of this time interval must be
broadcast at a minimum bandwidth)/(wtb + where b is the video consumption rate.

Summing over all intervals as ∆t approaches 0, we see that the bandwidth required to
transmit the video is given by

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

3 4 5 6 7

Bandwidth (channels)

W
ai

ti
n

g
 T

im
e

(f
ra

ct
io

n
 o

f
vi

d
eo

 d
u

ra
ti

o
n

) FDPB with m = 9 and OPP

FDPB with m = 100 and OPP

FDPB with m = 9

FDPB with m = 100

Figure 9. Customer waiting times achieved by FDPB protocols with or without OPP.
Note that the customers having preloaded the required number of video segments

in their STB have instant access to the video

w

wD
bwwDbdt

wt

bD +=−+=
+

�
ln)ln)(ln(

0

 (1)

Assume now that the protocol requires all customers to have the f first minutes of
the video preloaded in their STB. The minimum bandwidth required to transmit the
non-preloaded part of the video would then be given by:

f

D
bfDbdt

t

bD

f

ln)ln(ln =−=
�

 (2)

In most practical cases w and f will be much smaller than the video duration D and
thus D + w � D. Comparing equations (1) and (2), we can see that the bandwidth
required for broadcasting a video of duration D with a fixed customer delay w is almost
equal to the bandwidth required for broadcasting the same video when the customers
have the first w minutes of that video preloaded in their STBs.

Let us see now what happens when we make the preloading of the f first minutes of
the video optional and have to broadcast these f minutes separately. The minimum
bandwidth to distribute these f first minutes will be given by:

w

fw
bwfwbdt

wt

b
f +=−+=

+

�
ln)ln)(ln(

0

 (3)

By adding equations (2) and (3), we obtain the minimum bandwidth required to
broadcast the whole video, namely:

wf

fwD
b

w

fw
b

f

D
b

)(
lnlnln

+=+++ (4)

and the extra cost of providing instant video access to the customers who preloaded the
f first minutes of the video is then given by:

)(
)(

lnln
)(

ln
wDf

fwD
b

w

wD
b

wf

fwD
b

+
+=+−+

 (5)

Observing that f is a factor of the denominator while w only appears as term, we can
see that the best way to reduce the additional cost of optional preloading is to increase
the size of the preloaded portion of each video. The main drawback of this approach is
the additional storage requirements that a large f implies and the additional demands it
makes on the customer STB.

Figure 9 compares the customer waiting times achieved by two FDPB protocols
with and without optional partial preloading (OPP). The first FDPB protocol requires
customers to wait for 9 times the duration of a video segment (m = 9) while the other
uses much smaller segments and requires customers to wait for 100 times the duration
of a segment (m = 100). Bandwidths are expressed in channels. Since all these
channels have a bandwidth equal to the video consumption rate b, a bandwidth of
seven channels represents seven times the video consumption rate. All waiting times
are expressed as fractions of the video duration D. So, a value of 0.05 would
correspond to a maximum waiting time of six minutes for a two-hour video.

Several observations can be made from this Figure. First, implementing OPP
without increasing the server bandwidth always results in an increase of the waiting
time for the customers who have not preloaded the first few minutes of the video.
Second, the FDPB protocol using smaller segments and m = 100 always provides
smaller customer waiting times than the FDPB protocol with m = 9. This was
expected. The big surprise was that the gap between the waiting times achieved by
FDPB protocols with OPP and the waiting times achieved by the original FDPB
protocols was strongly affected by m. Adding OPP to an FDPB protocol with m = 9
always doubles the waiting time for the customer who have not preloaded the video
while adding the same option to an FDPB protocol with m = 100 only increased the
same waiting time by at most 68 percent.

One could thus conclude from this study that using smaller and smaller segments
with larger and larger values of m will result in improved performances for the FDPB
with and without OPP. There are however two limiting factors to consider. First,
increasing the value of m above 100 is not likely to bring much additional benefit as it
was found that FDPB with m = 100 already performs very close to the theoretical
minimum given by equation (1) [5]. Second, partitioning each video into a multitude
of very small segments would have a negative effect on the I/O bandwidth of the video
server as small reads are inherently less efficient than large reads.

5 Conclusions

Partial preloading offers a very cost effective solution to the problem of offering instant
access to popular videos. Unfortunately, it is not very realistic to assume that all
customers will always have the first few minutes of every video they want to watch
preloaded in their set-top box.

Optional partial preloading (OPP) solves this problem by making preloading
optional. It provides customers who have preloaded the first few minutes of a video in

their set-top box with instant access to that video while allowing other customers to
watch it after a short delay.

We have presented a fixed-delay pagoda broadcasting protocol (FDPB)
implementing OPP and shown that implementing OPP without increasing the server
bandwidth always resulted in a significant increase of the waiting time for the
customers who have not preloaded the first few minutes of the video. We have also
found that this increase was significantly affected by the m parameter of the FDPB
protocol we used: FDPB protocols using large numbers of small segments and large
values of m performed much better than protocols using large segments and small
values of m.

Given their deterministic nature and their low server bandwidth requirements,
broadcasting protocols like FDPB can be easily implemented on off-the-shelf
workstations [7]. Their ultimate success is likely to depend on the customer acceptance
of the smart set-top boxes these protocols require.

References

[1] S. W. Carter, D. D. E Long and J.-F. Pâris, Video-on-demand broadcasting protocols, In
Multimedia Communications: Directions and Innovations (J. D. Gibson, Ed.), Academic
Press, San Diego, 2000, pages 179–189.

[2] L. Juhn and L. Tseng. Fast data broadcasting and receiving scheme for popular video
service. IEEE Transactions on Broadcasting, 44(1):100–105, March 1998.

[3] J.-F. Pâris, S. W. Carter and D. D. E. Long. A hybrid broadcasting protocol for video on
demand. Proc. 1999 SPIE Conference on Multimedia Computing and Networking
(MMCN ‘99), Jan. 1999, pages 317–326.

[4] J.-F. Pâris, D. D. E. Long and P. E. Mantey. A zero-delay broadcasting protocol for video
on demand. Proc. 1999 ACM Multimedia Conference, Nov. 1999, pages 189–197.

[5] J.-F. Pâris. A fixed-delay broadcasting protocol for video-on-demand, Proc. 10th Interna-
tional Conference on Computer Communications and Networks (ICCCN ‘01), pages 418–
423, Oct. 2001.

[6] ReplayTV. http://www.replay.com/.
[7] K. Thirumalai, J.-F. Pâris and D. D. E. Long. Tabbycat: An inexpensive scalable server for

video-on-demand, submitted for publication.
[8] TiVo Technologies. http://www.tivo.com/.
[9] UltimateTV. http://www.ultimatetv.com/.
[10] S. Viswanathan and T. Imielinski. Metropolitan area video-on-demand service using

pyramid broadcasting. Multimedia Systems, 4(4):197–208, 1996.

